Половые клетки человека - гаметы. Гаметы: понятие, формирование, типы и процесс оплодотворения Гаметы у человека образуются

Процесс формирования половых клеток у растений подразделяется на два этапа: 1-й этап - спорогенез - завершается образованием гаплоидных клеток - спор, в ходе 2-го этапа - гаметогенеза - происходит ряд делений гаплоидных клеток, прежде чем образуются зрелые гаметы.

Процесс образования микроспор, или пыльцевых зерен, у растений называют микроспорогенезом , а процесс образования мегаспор (или макроспор) - мега- или макроспорогенезом . Микроспорогенез протекает аналогично делению созревания у животных мужских половых клеток до стадии сперматиды, а мегаспорогенез - соответственно до стадии незрелой яйцеклетки - ооцита II.

Процесс гаметогенеза у растений в принципе сходен с таковым у животных, но протекает несколько отличным путем. У животных после двух мейотических делений формируются гаметы, и никаких дополнительных клеточных делений не происходит. У растений в результате двух мейотических делений возникает гаплоидная спора, из которой развивается гаметофит, представляющий собой у низших растений (грибов, печеночников, мхов, ряда водорослей) целый организм и наиболее продолжительную стадию цикла существования. У высших растений гаплоидная фаза редуцирована, однако ядра мужской и женской спор претерпевают ряд митотических делений, прежде чем образуются гаметы.

Микроспорогенез и микрогаметогенез

Мы рассмотрим микроспорогенез и микрогаметогенез на примере покрытосеменных растений как наиболее общем. В субэпидермальной ткани молодого пыльника обособляется специальная спорогенная ткань, называемая археспорием . Каждая первичная археспориальная клетка после ряда делении становится материнской клеткой пыльцы (микроспороцитом), которая проходит все фазы мейоза.

В результате двух мейотических делений возникают четыре гаплоидные микроспоры. Последние лежат четвёрками и называются клеточными тетрадами .

У однодольных растений каждое деление ядра в мейозе, как правило, сопровождается цитокинезом; у двудольных оба деления клетки наступают одновременно по окончании мейоза.

При созревании клеточные тетрады распадаются на отдельные микроспоры с образованием внутренней (интина) и наружной (экзина) оболочек. Наружная оболочка, как правило, грубая, кутинизированная, поверхность ее либо гладкая, либо шероховатая; приспособленная для переноса пыльцы и прилипания ее к рыльцу пестика. Этим заканчивается микроспорогенез вслед за образованием одноядерной микроспоры начинается микрогаметогенез. Первое митотическое деление микроспоры приводит к образованию вегетативной и генеративной клеток. В дальнейшем вегетативная клетка и ее ядро не делятся. В ней накапливаются запасные питательные вещества, который в последующем обеспечивают деление генеративной клетки и рост пыльцевой трубки в столбике пестика.

Генеративная клетка, содержащая меньшее количество цитоплазмы, вновь делится. Это деление может осуществляться еще в пыльцевом зерне или в процессе его прорастания в пыльцевой трубке. В результате образуются две мужские половые клетки, которые в отличие от сперматозоидов животных называются спермиоклетками, или спермиями .

Таким образом, из одной споры с гаплоидным набором хромосом в результате двух митотических делений образуются три ядра: Два из них - спермии и одно - вегетативное. При образовании пыльцевой трубки это вегетативное ядро в полужидком диффузном состоянии переходит в пыльцевую трубку.

Процесс деления генеративной клетки и образование спермиев в пыльцевой трубке были впервые подробно изучены С. Г. Навашиным в 1910 г. на лилейных растениях.

Мегаспорогенез и мегагаметогенез

У покрытосеменных растений женский гаметофит - это зародышевый мешок, который закладывается и развивается внутри семяпочки.

Развитию женского гаметофита у высших покрытосеменных растений предшествует мегаспорогенез. В субэпидермальном слое молодой семяпочки обособляется археспориальная клетка, чаще она только одна. Клетка археспория растет, превращаясь в материнскую клетку мегаспоры. В результате двух делений мейоза материнской клетки мегаспоры образуется тетрада мегаспор. Каждая из клеток тетрады по числу хромосом является гаплоидной. Однако только одна из них продолжает развиваться, остальные три дегенерируют (моноспорический тип развития), судьба этих клеток напоминает судьбу редукционных телец при созревании яйцеклеток у животных.

На следующем этапе осуществляется мегагаметогенез. Оставшаяся функционировать мегаспора продолжает расти и затем ее ядро претерпевает ряд эквационных делений. При этом сама клетка не делится, делится только ядро.

У разных систематических групп растений число эквационных делений ядра мегаспоры может варьировать от одного до трех. У большинства растений (70% видов покрытосеменных) этих делений, как правило, в результате возникает восемь наследственно одинаковых ядер, вовремя этих делений ядра занимают полярное положение, четыре из них оказываются лежащими ближе к микропиле (место проникновения спермиев), а четыре других - в противоположном конце зародышевого мешка, называемого халазальным. Дальше эти ядра обособляются в самостоятельные клетки, имеющие значительные количества цитоплазмы.

Из четырех клеток, располагающихся у микропиле, три клетки - яйцеклетка, и две так называемые синергиды образуют яйцевой аппарат. Однако из этих трех клеток после оплодотворения развивается только одна, а две другие разрушаются. Четвертое ядро отходит к центру зародышевого мешка, где сливается с одним из ядер, отошедшим от халазального конца. Слившиеся в центральной части два гаплоидных ядра образуют одно диплоидное - вторичное или центральное, ядро зародышевого мешка. Это ядро с цитоплазмой зародышевого мешка называют обычно центральной клеткой зародышевого мешка. Однако часто полярные ядра, передвинувшиеся к центру, не сливаются до оплодотворения. Оставшиеся у халазального конца зародышевого мешка три ядра также обособляются в клетки; они называются антиподами .

Таким образом, в результате трех митотических делений в зародышевом мешке образуется 8 наследственно одинаковых гаплоидных ядер, из которых только одно дает яйцеклетку.

Рассмотренная схема образования восьмиядерного зародышевого мешка из одной мегаспоры является наиболее типичной. Однако у различных групп растений этот процесс протекает весьма разнообразно. В одних случаях, как мы только что рассмотрели, развитие зародышевого мешка начинается из одной гаплоидной споры (моноспорический тип развития), в других - из двух (биспорический тип) и четырех спор (тетраспорический тип).

Как мы указывали, при моноспорическом типе развивается лишь одна мегаспора из четырех, а остальные три разрушаются подобно тому, что имеет место с редукционными тельцами у животных. При других типах развития зародышевого мешка сохраняется разное количество мегаспор, возникших в результате мейоза и готовых к дальнейшим митотическим делениям.

Изучая гаметогенез, нельзя не поражаться тому параллелизму, который наблюдается при созревании половых клеток у животных и растений, несмотря на то, что их расхождение (дивергенция) в филогенезе произошло на очень раннем этапе возникновения клеточной организации. Это указывает на однотипность принципов построения ряда приспособительных механизмов как в растительном, так и животном мире.

Итак, изучение развития половых клеток у животных и у растений показало, что формирование гамет является сложным процессом. Прежде чем яйцеклетка и спермий объединятся в процессе оплодотворения, они претерпевают ряд превращений. Однако половые клетки так же, как и клетки любой другой ткани, происходят из соматических. Поэтому их нельзя рассматривать как нечто обособленное от тела организма. Вместе с тем половые клетки имеют и свои особенности. Основными характерными моментами, отличающими их от соматических клеток, являются следующие:

1. У разных животных и растений на разных стадиях дифференциации тканей зародыша происходит обособление половых клеток. Процесс закладки и дифференциации, половых клеток у животных называется зачатковым путем .

2. В процессе развития половых клеток особое значение имеет мейоз с характерными для него стадиями деления ядра, а именно профазой I, во время которой конъюгируют гомологичные хромосомы, метафазой I и анафазой I, когда осуществляется редукция числа хромосом и расхождение гомологичных хромосом к различным полюсам.

3. Главным свойством половых клеток является способность их при оплодотворении сливаться в одну с образованием зиготы, которая претерпевает затем дробление и развитие. Соматические клетки этой способностью, как правило, не обладают.

Половые клетки - гаметы (от греч. gametes – «супруг») можно обнаружить уже у двухнедельного эмбриона человека. Их называют первичными половыми клетками. В это время они совсем не похожи на сперматозоиды или яйцеклетки и выглядят абсолютно одинаковыми. Никаких различий, присущих зрелым гаметам, на этой стадии развития зародыша обнаружить у первичных половых клеток не удается. Это не единственная их особенность. Во-первых, первичные половые клетки появляются у зародыша гораздо раньше собственно половой железы (гонады), а во-вторых, они возникают на значительном удалении от того места, где эти железы сформируются позднее. В определенный момент происходит совершенно удивительный процесс – первичные половые клетки дружно устремляются к половой железе и заселяют, «колонизируют» ее.

После того, как будущие гаметы попали в половые железы, они начинают интенсивно делиться, и количество их увеличивается. На этом этапе половые клетки содержат пока то же количество хромосом, что и "телесные" (соматические ) клетки – 46. Однако для успешного осуществления своей миссии половые клетки должны иметь в 2 раза меньше хромосом. В противном случае после оплодотворения, то есть слияния гамет, клетки зародыша будут содержать не 46, как установлено природой, а 92 хромосомы. Нетрудно догадаться, что в следующих поколениях их число прогрессивно бы увеличивалось. Чтобы избежать такой ситуации формирующиеся половые клетки проходят специальное деление, которое в эмбриологии называется мейоз (греч. meiosis – «уменьшение»). В результате этого удивительного процесса диплоидный (от греч. diploos – «двойной»), набор хромосом как бы «растаскивается» на составляющие его одинарные, гаплоидные наборы (от греч. haploos – одиночный). В результате из диплодной клетки с 46 хромосомами получаются 2 гаплоидные клетки с 23 хромосомами. Вслед за этим наступает завершающий этап формирования зрелых половых клеток. Теперь в гаплоидной клетке копируются имеющиеся 23 хромосомы и эти копии используются для образования новой клетки. Таким образом, в результате описанных двух делений из одной первичной половой клетки образуется 4 новых.

Причем, в сперматогенезе (греч. genesis – зарождение, развитие) в результате мейоза появляется 4 зрелых сперматозоида с гаплоидным набором хромосом, а в процессе формирования яйцеклетки - в оогенезе (от греч. oon – «яйцо») только одна. Это происходит потому, что образовавшийся в результате мейоза второй гаплоидный набор хромосом яйцеклетка не использует для формирования новой зрелой половой клетки - ооцита, а «выбрасывает» их, как «лишние», наружу в своеобразном «мусорном контейнере», который называется полярным тельцем. Первое деление хромосомного набора завершается в оогенезе выделением первого полярного тельца непосредственно перед овуляцией. Второе репликационное деление происходит только после проникновения сперматозоида внутрь яйцеклетки и сопровождается выделением второго полярного тельца. Для эмбриологов полярные тельца – очень важные диагностические показатели. Есть первое полярное тельце, значит яйцеклетка зрелая, появилось второе полярное тельце – оплодотворение произошло.

Первичные половые клетки, оказавшиеся в мужской половой железе, до поры до времени не делятся. Их деление начинается только в период полового созревания и приводит к образованию когорты так называемых стволовых диплоидных клеток, из которых и формируются сперматозоиды. Запас стволовых клеток в яичках постоянно пополняется. Здесь уместно напомнить описанную выше особенность сперматогенеза - из одной клетки образуется 4 зрелых сперматозоида. Таким образом, после полового созревания у мужчины в течение всей жизни формируются сотни миллиардов новых сперматозоидов.

Формирование яйцеклеток протекает иначе. Едва заселив половую железу, первичные половые клетки начинают интенсивно делиться. К 5 месяцу внутриутробного развития их количество достигает 6-7 миллионов, но затем происходит массовая гибель этих клеток. В яичниках новорожденной девочки их остается не более 1-2 миллионов, к 7-летнему возрасту – всего лишь около 300 тысяч, а в период полового созревания 30 –50 тысяч. Общее же число яйцеклеток, которые достигнут зрелого состояния за период половой зрелости, будет еще меньше. Хорошо известно, что в течение одного менструального цикла в яичнике обычно созревает лишь один фолликул. Нетрудно подсчитать, что в течение репродуктивного периода, продолжающегося у женщин 30 – 35 лет, образуется около 400 зрелых яйцеклеток.

Если мейоз в сперматогенезе начинается в период полового созревания и повторяется миллиарды раз в течение жизни мужчины, в оогенезе формирующиеся женские гаметы вступают в мейоз еще в периоде внутриутробного развития. Причем начинается этот процесс почти одновременно у всех будущих яйцеклеток. Начинается, но не заканчивается! Будущие яйцеклетки доходят только до середины первой фазы мейоза, а дальше процесс деления блокируется на 12 - 50 лет! Лишь с приходом половой зрелости мейоз в оогенезе продолжится, причем не всех клеток сразу, а лишь для 1- 2 яйцеклеток ежемесячно. Полностью же процесс мейотического деления яйцеклетки завершится, как уже было сказано выше, только после ее оплодотворения! Таким образом, сперматозоид проникает в яйцеклетку, еще не завершившую деление, имеющую диплоидный набор хромосом!

Сперматогенез и оогенез – очень сложные и во многом загадочные процессы. Вместе с тем очевидна подчиненность их законам взаимосвязи и обусловленности природных явлений. Для оплодотворения одной яйцеклетки in vivo (лат. в живом организме) необходимы десятки миллионов сперматозоидов. Мужской организм вырабатывает их в гигантских количествах практически всю жизнь.

Вынашивание и рождение ребенка является чрезвычайно тяжелой нагрузкой на организм. Врачи говорят, что беременность – это проба на здоровье. Каким родится ребенок – напрямую зависит от состояния здоровья матери . Здоровье, как известно, не вечно. Старость и болезни, к сожалению, неотвратимы. Природа дает женщине строго ограниченное невосполнимое число половых клеток. Снижение способности к деторождению развивается медленно, но постепенно по наклонной. Наглядное доказательство того, что это действительно так, мы получаем, ежедневно оценивая результаты стимуляции яичников в программах ВРТ. Большая часть яйцеклеток обычно израсходована к 40 годам, а к 50 годам весь их запас полностью исчерпывается. Нередко так называемое истощение яичников наступает значительно раньше. Следует также сказать, что яйцеклетка подвержена «старению», с годами ее способность к оплодотворению снижается, процесс деления хромосом все чаще нарушается. Заниматься деторождением в позднем репродуктивном возрасте рискованно из-за возрастающей опасности рождения ребенка с хромосомной патологией. Типичным примером является синдром Дауна, который возникает из-за оставшейся при делении третьей лишней 21 хромосомы. Таким образом, ограничив репродуктивный период, природа охраняет женщину и заботится о здоровом потомстве.

По каким законам происходит деление хромосом? Как передается наследственная информация? Для того чтобы разобраться с этим вопросом, можно привести простую аналогию с картами. Представим себе молодую супружескую пару. Назовем их условно – Он и Она. В каждой его соматической клетке находятся хромосомы черной масти – трефы и пики. Набор треф от шестерки до туза он получил от своей мамы. Набор пик – от своего папы. В каждой ее соматической клетке хромосомы красной масти – бубны и червы. Набор бубен от шестерки до туза она получила от своей мамы. Набор червей – от своего папы.

Для того чтобы получить из диплоидной соматической клетки половую клетку, число хромосом должно быть уменьшено вдвое. При этом половая клетка обязательно должна содержать полный одинарный (гаплоидный) набор хромосом. Ни одна не должна потеряться! В случае карт такой набор можно получить следующим образом. Взять наугад из каждой пары карт черной масти по одной и таким образом сформировать два одиночных набора. Каждый набор будет включать все карты черной масти от шестерки до туза, однако, какие именно это будут карты (трефы или пики) определил случай. Например, в одном таком наборе шестерка может быть пиковой, а в другом – трефовой. Нетрудно прикинуть, что в примере с картами при таком выборе одиночного набора из двойного мы можем получить 2 в девятой степени комбинаций – более 500 вариантов!

Точно также будем составлять одиночный набор из ее карт красной масти. Получим еще более 500 разных вариантов. Из его одиночного и ее одиночного набора карт составим двойной набор. Он получится мягко сказать «пестреньким»: в каждой паре карт одна будет красной масти, а другая – черной. Общее число таких возможных наборов 500 х 500, то есть 250 тысяч вариантов.

Примерно также, по закону случайной выборки, поступает и природа с хромосомами в процессе мейоза. В результате из клеток с двойным, диплоидым набором хромосом получаются клетки, каждая из которых содержит одиночный, гаплоидный полный набор хромосом. Предположим, в результате мейоза в вашем теле образовалась половая клетка. Сперматозоид или яйцеклетка – в данном случае не важно. Она обязательно будет содержать гаплоидный набор хромосом – ровно 23 штуки. Что именно это за хромосомы? Рассмотрим для примера хромосому № 7. Это может быть хромосома, которую вы получили от отца. С равной вероятностью она может быть хромосомой, которую вы получили от матери. То же самое справедливо для хромосомы № 8, и для любой другой.

Поскольку у человека число хромосом гаплоидного набора равно 23, то число возможных вариантов половых гаплоидных клеток, образующихся из диплоидных соматических, равно 2 в степени 23. Получается более 8 миллионов вариантов! В процессе оплодотворения две половые клетки соединяются между собой. Следовательно, общее число таких комбинаций будет равно 8 млн. х 8 млн. = 64000 млрд. вариантов! На уровне пары гомологичных хромосом основа этого разнообразия выглядит так. Возьмем любую пару гомологичных хромосом вашего диплоидного набора. Одну из таких хромосом вы получили от матери, но это может быть хромосома либо вашей бабушки, либо вашего дедушки по материнской линии. Вторую гомологичную хромосому вы получили от отца. Однако она опять-таки может быть независимо от первой либо хромосомой вашей бабушки, либо вашего дедушки уже по отцовской линии. А таких гомологических хромосом у вас 23 пары! Получается невероятное число возможных комбинаций. Неудивительно, что при этом у одной пары родителей, рождаются дети, которые отличаются друг от друга и внешностью, и характером.

Кстати, из приведенных выше расчетов следует простой, но важный вывод. Каждый человек, ныне здравствующий, или когда-либо живший в прошлом на Земле, абсолютно уникален. Шансы появления второго такого же практически равны нулю. Поэтому не надо себя ни с кем сравнивать. Каждый из вас неповторим, и тем уже интересен!

Однако вернемся к нашим половым клеткам. Каждая диплоидная клетка человека содержит 23 пары хромосом. Хромосомы с 1 по 22 пару называются соматическим и по форме они одинаковы. Хромосомы же 23-й пары (половые хромосомы) одинаковы только у женщин. Они и обозначаются латинскими буквами ХХ. У мужчин хромосомы этой пары различны и обозначаются ХY. В гаплоидном наборе яйцеклетки половая хромосома всегда только Х, сперматозоид же может нести или Х или Y хромосому. Если яйцеклетку оплодотворит Х сперматозоид, родится девочка, если Y сперматозоид – мальчик. Все просто!

Почему мейоз у яйцеклетки так долго растянут во времени? Каким образом ежемесячно происходит выбор когорты фолликулов, которые начинают свое развитие и как из них выделяется лидирующий, доминантный, овуляторный фолликул, в котором созреет яйцеклетка? На все эти непростые вопросы у биологов нет пока однозначных ответов. Процесс формирования зрелых яйцеклеток у человека ждет новых исследователей!

Образование и созревание сперматозоидов, как уже было сказано, происходит в семенных канальцах мужской половой железы – яичках . Сформированный сперматозоид имеет длину около 50-60 микрон. Ядро сперматозоида находится в его головке. Оно содержит отцовский наследственный материал. За головкой располагается шейка, в которой имеется крупная извитая митохондрия – органоид, обеспечивающий движения хвоста. Иначе говоря, это своеобразная «энергетическая станция». На головке сперматозоида есть «шапочка». Благодаря ей форма головки - овальная. Но, дело не в форме, а в том, что содержится под «шапочкой». «Шапочка» эта на самом деле является контейнером и называется акросомой , а содержатся в ней ферменты, которые способны растворять оболочку яйцеклетки, что необходимо для проникновения сперматозоида внутрь - в цитоплазму яйцеклетки. Если у сперматозоида нет акросомы, головка у него не овальная, а круглая. Эта патология сперматозоидов называется глобулоспермия (круглоголовые сперматозоиды). Но, беда опять не в форме, а в том, что такой сперматозоид не может оплодотворить яйцеклетку, и мужчина с таким нарушением сперматогенеза до последнего десятилетия был обречен на бездетность. Сегодня благодаря ВРТ есплодие у этих мужчин может быть преодолено, но об этом мы расскажем позднее в главе посвященной микроманипуляциям, в частности, ИКСИ .

Перемещение сперматозоида осуществляется за счет движения его хвостика. Скорость движения сперматозоида не превышает 2-3 мм в минуту. Казалось бы, немного, однако, за 2-3 часа в женском половом тракте сперматозоиды проходят путь, в 80000 раз превышающий их собственные размеры! Будь на месте сперматозоида в этой ситуации человек, ему пришлось бы двигаться вперед со скоростью 60-70 км/час – то есть со скоростью автомобиля!

Сперматозоиды, находящиеся в яичке, неподвижны. Способность к движению они приобретают лишь, проходя по семявыводящим путям под воздействием жидкостей семявыводящих протоков и семенных пузырьков, секрета предстательной железы. В половых путях женщины сперматозоиды сохраняют подвижность в течение 3 - 4 суток, но оплодотворить яйцеклетку они должны в течение 24 часов. Весь процесс развития от стволовой клетки до зрелого сперматозоида длится примерно 72 дня. Однако, поскольку сперматогенез происходит непрерывно и в него одномоментно вступает громадное число клеток, то в яичках всегда есть большое количество спермиев, находящихся на разных этапах сперматогенеза, а запас зрелых сперматозоидов постоянно пополняется. Активность сперматогенеза индивидуальна, но с возрастом снижается.

Как мы уже говорили, яйцеклетки находятся в фолликулах яичника. В результате овуляции яицеклетка попадает в брюшную полость, откуда она «вылавливается» фимбриями маточной трубы и переносится в просвет ее ампулярного отдела. Именно здесь происходит встреча яйцеклетки со сперматозоидами.

Какое же строение имеет зрелая яйцеклетка? Она довольно крупная и достигает 0,11-0,14 мм в диаметре. Сразу после овуляции яйцеклетка окружена скоплением мелких клеток и желатинообразной массой (так называемым лучистым венцом ). Видимо, в таком виде фимбриям маточной трубы удобнее захватывать яйцеклетку. В просвете маточной трубы с помощью ферментов и механического воздействия (биения ресничек эпителия), происходит «очистка» яйцеклетки от лучистого венца. Окончательно освобождение яйцеклетки от лучистого венца происходит после встречи ее со сперматозоидами, которые буквально облепляют яйцеклетку. Каждый сперматозоид выделяет из акросомы фермент, растворяющий не только лучистый венец, но и действующий на оболочку самой яйцеклетки. Эта оболочка называется блестящей, так она выглядит под микроскопом. Выделяя фермент, все сперматозоиды стремятся оплодотворить яйцеклетку, но блестящая оболочка пропустит лишь один из них. Получается, что устремляясь к яйцеклетки, воздействуя на нее коллективно, сперматозоиды «расчищают дорогу» только для одного счастливчика. Отбором сперматозоида роль блестящей оболочки не ограничивается, на ранних стадиях развития эмбриона она поддерживает упорядоченное расположение его клеток (бластомеров). В какой-то момент блестящая оболочка становится тесной, она разрывается и происходит хетчинг (от анг. hatching – «вылупление») – вылупление эмбриона.

ГАМЕТЫ (греч. gametes муж, супруг) - специализированные половые клетки у организмов, размножающихся половым путем, которые обеспечивают при своем слиянии в процессе оплодотворения передачу и объединение генной программы родительских особей для развития признаков нового организма.

У всех многоклеточных организмов зрелые Г. развиваются в половых железах - гонадах (мужских - семенниках и женских - яичниках) из незрелых зачатковых клеток - гаметоцитов. В процессе роста и созревания Г.- гаметогенеза (см.) диплоидное (обычное двойное) число хромосом в ядрах гаметоцитов редуцируется в результате мейоза (см.) до гаплоидного (вдвое меньшего). Зрелые Г. гаплоидны. При образовании зиготы в результате слияния Г. восстанавливается диплоидное число хромосом, характерное для клеток нового организма. Мужские и женские Г. значительно различаются. У подавляющего большинства организмов имеет место гетерогамия: сперматозоиды (микрогаметы) содержат небольшое количество цитоплазмы, маленькое ядро, «хвост» (жгут) и обладают двигательной активностью; яйцеклетки (макро-гаметы) имеют большое количество цитоплазмы, большие размеры и не способны к активному перемещению.

У некоторых организмов (круглые черви, большинство членистоногих) мужские Г. (спермии) не имеют органеллы передвижения и движутся путем образования клеточных выростов - псевдоподий. В ряде случаев активную роль в захватывании неподвижных спермиев играют яйцеклетки. У растительных организмов (зеленые и бурые водоросли) подвижностью обладают и мужские и женские Г., отличающиеся размерами (женские - макрогаметы). У низших грибов и зеленых водорослей Г. не различимы морфологически (изогамия).

Для человека и высших животных характерна гетерогамия - значительные различия Г. по структуре (рис.) и роли в процессе оплодотворения. Цитоплазма яйцеклеток богата цитоплазматической ДНК и РНК, свободными нуклеотидами, белками и другими веществами, необходимыми для обеспечения развития зиготы. Т. о., сперматозоиды в основном несут ядерную генетическую информацию, яйцеклетки - ядерную и цитоплазматическую генетическую информацию плюс внутриклеточную среду для первых этапов ее реализации при развитии нового организма.

У простейших одноклеточных организмов при половом процессе функцию Г. выполняют сами особи, в ряде случаев претерпевающие при этом морфо-физиол. изменения (см. Простейшие). Половой процесс у некоторых низших растений и простейших животных протекает без участия Г.-в первом случае сливаются физиологически разнополые участки тела или соматические клетки, во втором происходит обмен части ядер (микронуклеусов) при временном соприкосновении (конъюгации) двух взрослых особей (см. Инфузории).

Библиография: Пэттен Б. М. Эмбриология человека, пер. с англ., М., 1959; Руководство по цитологии, под ред. А. С. Трошина, т. 2, с. 390, М.-Л., 1966; Austin С. Н. The mammalian egg, Springfield, 1961.

Ю. Ф. Богданов.

Возникает гаплоид- 


    РИС. 15-27. Мейоз . Деление клетки , приводящее к образованию гаплоидных гамет. 

Споры ипи гаметы, образованные гетеро-зиготой 

Отношение доминантных фенотипов к рецессивным как 3 1 характерно для поколения Рг при моногибридном скрещивании . Выводы Менделя о передаче каждой гаметой одного аллеля и о его фенотипическом проявлении соответствуют вероятностным законам. Вероятность того, что гамета , образованная гетерозиготной родительской особью Рь будет нести доминант- 

У человека и высших животных в результате мейоза образуются гаметы- яйцеклетка и сперматозоиды. При их слиянии возникает снова диплоидное ядро , из которого путем последовательных митозов развивается взрослый организм. Стадия мейоза характерна для жизненного цикла всех эукариот , однако отнюдь не всегда этот процесс протекает в период, аналогичный соответствующему моменту жизненного цикла человека. Так, клетки многих простейших и грибов обычно гаплоидны. После слияния двух гаплоидных ядер с образованием диплоидной клетки быстро наступает мейотическое деление, в результате которого вновь возникают гаплоидные особи. Чередование гаплоидных и диплоидных фаз жизненного цикла часто встречается у низших растений и примитивных животных. Например, гаметы папоротника падают на почву и 

Механизм, при помощи которого хромосомы распределяются в половых клетках (гаметах), например при формировании яйцеклетки и сперматозоидов, называется мейозом (гл. I, разд. В, 3). При образовании гамет число хромосом 

Частота образования различных типов гамет будет различна в зависимости от расстояния между генами. Однако в 

Необходимость уменьшения числа хромосом вдвое при образовании гамет объясняется тем, что при оплодотворении происходит суммирование хромосом сливающихся гамет. Если бы это суммирование не компенсировалось уменьшением 

ОБРАЗОВАНИЕ ГАМЕТ У ВЫСШИХ ЖИВОТНЫХ и У ЧЕЛОВЕКА 

И аЬ. Это одинаково относится как к пыльцевым зернам , так и к яйцеклеткам. Ввиду того что соединение гамет различных типов при образовании гибридами потомства происходит совершенно случайно, это случайное соединение можно выразить формулой АВ АЬ + аВ + аЬ) х АВ + АЬ + аВ - - аЬ). Результаты такого соединения станут более ясными, если 16 образующихся при этом комбинаций представить в виде следующей таблицы  

Однако довольно часто образуется небольшое число функционирующих гамет, причем у этих гамет число хромосом не редуцировано они возникают благодаря образованию реституционных ядер и способны функционировать, так как содержат все хромосомы. Таким образом, они имеют ту же наследственную конституцию , как и гаметы, нормально образуемые соответствующим диплоидом. Так, нормальный диплоид дурмана имеет 24 хромосомы, а соответствующий гаплоид-12 хромосом. Все эти хромосомы качественно различны и поэтому могут функционировать лишь нередуцированные гаметы , содержащие все хромосомы. Если от подобных гаплоидов удается получить потомство, то некоторые из развившихся растений будут диплоидными и, таким образом, будет восстановлено число хромосом, типичное для данного вида. 

В ОДНОМ опыте четыре указанные категории мух образовались с частотой 1) 145 2) 150 3) 33 4) 28, Общее число мух в этом случае составляло 356. Две кроссоверные категории мух (3 и 4) вместе были представлены 61 особью, составляя всего 17,1% общего числа мух. Очевидно, что это число показывает процент гамет кроссове рного типа в Таким образом, степень сцепления генов определяется путем скрещивания самок из Рх с самцами, рецессивными по обоим генам. При этом получаются четыре внешне различные категории потомства, которые точно соответствуют четырем типам гамет, образованным самкой р1. Процент перекреста определяется подсчетом числа полученных кроссоверных особей, которое выражается в процентах к общему числу особей. 

Путем последовательных митотических делений из одной оплодотворенной яйцеклетки формируется взрослый организм. Для формирования организма человека достаточно всего 40-50 последовательных митозов. Однако образование гамет (половых клеток), имеющих гаплоидный набор хромосом, осуществляется путем мейоза - специального процесса , в ходе которого число хромосом делится надвое. При мейозе одна хромосома из каждой гомологичной пары, содержащейся в диплоидной клетке , переходит в одну из образующихся гамет. В организме, подобном As aris, который содержит единственную пару хромосом, гамета получает хромосому либо от отцовского организма, либо от материнского, но не от обоих сразу. В организмах, имеющих несколько пар хромосом, хромосомы при мейозе распределяются случайным образом, так что в каждой гамете имеются как материнские, так и отцовские хромосомы. 

Независимое распределение геиов (Independent assortment) Распределение генов, локализованных на разных хромосомах, по гаплоидным гаметам с образованием всех возможных комбинаций генов. Лежит в основе закона Менделя о независимом распределении признаков. 

Наличие квадривалентов, тривалентов и унивалентов в мейозе у тетраплоидов ведет к нарушениям в распределении хромосом и к образованию гамет с измененными числами 

У низших грибов фаза полового размножения начинается с образования половых клеток, или гамет. Если гаметы, происходящие от мужской и женской родительских клеток, морфологически неразличимы, их называют изогаметами. Гаметы образуются часто в особых морфологически дифференцированных клетках - гаметангиях. Если эти последние различны по своей форме, то мужские гаметангии называют антери-диями, а женские - оогониями. 

Грибы размножаются вегетативным, т. е. бесполым путем, но у них есть и половое размножение . Бесполое раампожекке возможно- спорами, почкованием клеток, фрагментацией гиф с образованием оидий или артроспор, а также в результате механического разрыва мицелия. Грибам свойственна высокая регенеративная способность любой обрывок мицелия в благоприятных условиях дает рост, превращаясь в организм следующего поколения. Половое размножение грибов происходит в результате слияния двух клеток - гамет (плазмогамия), сопро- 

К моменту вьшупления личинки в ее организме имеются две первичные половые клетки, нз которых в дальнейшем образуется около 2000 клеток, заполняющих гонаду взрослой особи. Вблизи дистального конца гонады продолжается образование первичных половых клбток путем митотических делений , в то время как в остальной части гонады они вступают в мейоз (рис. 15-68). Пролиферирующие клетки дистального конца, подобно сперматогониям у самцов млекопитающих, играют роль стволовых клеток, восполняющих убыль гамет, по мере того как те созревают и используются для размножения. 

У всех высших растений и животных в процессе полового размножения происходит смена ядерных фаз. При оплодотворении половые клетки (гаметы) и их ядра сливаются, образуя зиготу. Отцовское и материнское ядра вносят при оплодотворении одинаковое число хромосом (п) таким образом, ядро зиготы содержит двойной хромосомный набор (2п). Иными словами, гаметы-гаплоидные клетки (т.е. клетки с одним набором хромосом), а соматические клетки -диплоидные (с двумя наборами). Поэтому при образовании гамет следующего поколения число хромосом в клетке (2и) должно уменьшиться вдвое (2и/2 = и). Совокупность процессов, приводящих к уменьшению числа хромосом, называют мейозом или редукционным делением (рис. 2.3). Мейоз - важнейший процесс у организмов, размножающихся половым путем он приводит к двум результатам 1) к перекомбинированию отцовских и материнских наследственных факторов (генов) и 2) к уменьшению числа хромосом. Мейоз начинается с конъюгации хромосом-каждая хромосома соединяется с соответствующей (гомологичной) хромосомой, происходящей от дфугого родителя. Во время конъюгации путем разрыва и перекрестного воссоединения (кроссинговера) может происходить обмен фрагментами одинаковой длины между гомологичными хромосомами . Затем следует двукратное разделение спаренных расщепившихся хромосом, и в результате образуются четыре клетки, каждая из которых имеет гаплоидное ядро. Таким образом, в процессе мейоза не только происходит перетасовка хромосом материнского и отцовского происхождения, но может произойти и обмен сегментами между гомологичными хромосомами . Оба процесса приводят к новым сочетаниям генов (к их рекомбинации). 

У родительских особей наследственные детерминанты, 0пределя 10ш ие окраску цветков, существуют в двух устойчивых альтернативных формах , или аллелях. Пурпурной окраске соответствует гомозиготная пара аллелей РР, а белой окраске - также гомозиготная пара аллелей рр. При образовании гамет (половых клеток) эти аллели распределяются независимо друг от друга при оплодотворении аллели рекомбинируют. 

ПРЯМОЕ ДОКАЗАТЕЛЬСТВО ОБРАЗОВАНИЯ ГЕТЕРОЗИГОТОИ ГАМЕТ Л И а В РАВНОМ КОЛИЧЕСТВЕ 

Чрезвычайно важное положение, следующее из таблицы дигибридного расщепления , состоит в том, что гены скрещиваемых сортов могут рекомбинироваться при образовании гибридами гамет . В результате становится возможным возникновение новых константных сортов с новыми сочетаниями признаков. Так, скрещивание (красные гладкие) X (белые морщинистые) приведет к возникновению в Ра новых сочетаний (красные морщинистые) и (белые гладкие). Если это выразить в виде формул, то скрещивание ААВВ У(ааЬЬ, помимо всего прочего, даст рекомбинации ААЬЬ и ааВВ. В эти сочетания входят те же самые гены, что и в прежние, однако они были перегруппированы, и эта перегруппировка, или рекомбинация, привела к образованию особей (а с их помощью, если мы захотим, и константных новых сортов) с совершенно новыми сочетаниями признаков. Такая рекомбинация представляет собой следствие того, что при. мейозе у гибридов доминантные и рецессивные гены разделяются и что гены, входящие в различные пары аллелей, наследуются независимо друг от друга. 

В только что приведенном примере дигибридного расщепления одна из родительских форм несла два доминантных гена (ААВВ), а другая была рецессивна по обои .м этим генам (ааЬЬ). Точно такое же расщепление произойдет в том случае, если каждая из родительских форм имеет только один доминантный ген ААЬЬ, ааВВ) при этом родительские формы будут иметь соответственно следующие признаки красные цветки, морщинистые семена и белые цветки, гладкие семена. Соединение при скрещивании гамет АЬ и аВ приведет к образованию в р1 особей, которые, как и в первом случае, будут иметь конституцию АаВЬ. Внешними признаками этих потомков будут красные цветки и гладкие семена, и, следовательно, в этом случае особи Р1 будут отличаться от обеих родительских форм . Однако расщепление во втором поколении будет такое же, как и при скрещивании ААВВ X ааЬЬ. Самая распространенная категория растений в Рг (соответствующая 

В гл. III подчеркивалось, что в мейозе