Значение слова «постоянный. Что такое постоянная призмы и откуда она берется, Seco Цефеиды – маяки Вселенной

Определение постоянного тока

В идеальном случае постоянный ток не меняет своего значения и направления со временем. В действительности постоянный ток не является постоянной величиной в выпрямительных устройствах, так как он содержит переменную составляющую (пульсации).

Форма составляющих постоянного тока

В гальванических элементах постоянный ток тоже не постоянен, его значение уменьшается на нагрузке с течением времени, таким образом, постоянный ток является условным определением и при его использовании, изменениями постоянной величины пренебрегают.

Постоянная составляющая тока (DС)

DC — это Direct Current в переводе как постоянный ток. Графически в форме тока можно увидеть его изменения во времени или пульсации. Такие пульсации возникают в форме постоянного тока в выпрямителях с фильтрами, где используются небольшие емкости. В выпрямительных устройствах без использования емкостей пульсация может быть большой.

Пульсирующий ток на выходе выпрямителя без емкостей иногда называют импульсным током. На графике пульсирующего тока отображены постоянная составляющая DC (прямая линия) и переменная AC (пульсации). Постоянная составляющая тока определяется как среднее значение тока в течение периода.

AVG — это среднее значение постоянного тока. Переменную составляющую AC можно рассматривать как изменение постоянного тока относительно средней величины . Пульсацию формы постоянного тока определяют по формуле.

Где Iac – среднее значение переменной составляющей AC, Idc — постоянная составляющая тока.

Всё вышесказанное также относится и к постоянному напряжению.

Параметры постоянного тока и напряжения

Интенсивность электрического тока выражается в количестве зарядов перемещенных за промежуток времени через поперечное сечение проводника. Одним из важных параметров постоянного тока является величина тока, которая измеряется в Амперах. Интенсивность тока в 1 Ампер заключается в перемещении заряда один Кулон в течение 1 секунды.

Напряжение постоянного тока измеряется в Вольтах. Напряжение постоянного тока представляет собой разность потенциалов между двумя точками одной электрической цепи. Также важным параметром для постоянного напряжения является размах пульсации и коэффициент пульсации. Размах пульсации представляет собой разность между максимальной величиной пульсации и минимальной.

А коэффициент пульсации выражается в отношении действующей величины переменной составляющей (AC) тока к постоянному значению составляющей (DC). Также важным параметром постоянного тока является мощность P. Мощность постоянного тока можно характеризовать его работой за определенный промежуток времени. Мощность измеряется в Ваттах и определяется по формуле:

Согласно этой формуле одинаковую мощность можно получить при разных токах и напряжениях.

Что такое постоянная призмы и откуда она берется

Прохождение светового луча электронного дальномера через световозвращающую тетраэдрическую призму (или отражатель) происходит с задержкой, из-за того, что плотность материала призмы гораздо выше плотности воздуха. Эта задержка приводит к увеличению значения измеренного расстояния. Ошибка измеренного расстояния может компенсироваться с помощью поправки, вводимой в расстояние, которая автоматически учитывается в программном обеспечении современных тахеометров. Так же для компенсации задержки можно использовать физический сдвиг узловой точки призмы относительно оси вешки/держателя призмы, на величину ошибки, вызванной этой задержкой. Поправка определяется размерами призмы и коэффициентом преломления используемого стекла. Стандартные поправки, наиболее часто встречающиеся в современных отражателях:

0 -17.5 мм -30 мм -34 мм -40 мм

Смещение узловой точки. Постоянная отражателя

Постоянная отражателя (призменной системы в целом, включающей в себя конструкцию из самой призмы, и системы крепления на веху/трегерный адаптер) определяется положением условного центра держателя призмы, который расположен на пересечении продольной оси вехи и горизонтальной оси вращения отражателя, относительно узловой точки призмы. На первый взгляд кажется, что решить проблему учета постоянной достаточно просто - необходимо всего лишь сместить призму относительно оси вехи на величину, равную постоянной призмы. Однако призмы и держатели, имеющие смещение узловой точки равное постоянной призмы, могут вызывать ошибку угловых измерений при наведении на вершину призмы, если отражатель находится не под прямым углом к линии визирования (два рисунка ниже).

Для снижения ошибки позиционирования некоторые отражатели SECO имеют смещение узловой точки -17.5/18 мм (для призм диаметром 25 мм) или - 40 мм (для призм диаметром 62 мм). Смещение узловой точки минимизирует ошибки, вызванные отклонением точки визирования от оси. Такая конструкция наиболее оправдана при работе на небольших расстояниях или при большом перепаде высот, в случаях, когда для визирования используется вершина или центр призмы. Смотрите рисунок ниже.


Предельная дальность измерений на отражатель

Для вычисления расстояния от инструмента до цели используется отражённый от призмы сигнал. При этом на предельную дальность работы светодальномера в основном влияют два фактора: диаметр призмы и отклонение отражённого луча. Для увеличения предельного измеряемого расстояния можно увеличить диаметр призмы, установив на точку систему из нескольких отражателей. Так же можно увеличить дальность измерения, если достаточно точно сориентировать отражатель по направлению к инструменту. Если же отклонение отражённого луча велико, не весь световой пучок попадет обратно на приёмный модуль дальномера, при этом предельная дальность измерения сократится.

В общем случае, наилучшие результаты измерений достигаются тогда, когда передняя часть призмы расположена строго перпендикулярно световому лучу, пришедшему от инструмента, вызывая его параллельное отражение. К сожалению, при полевых работах очень сложно идеально выставить призму относительно инструмента.

Так же отклонение луча может происходить, если качество призменного блока недостаточно высокое. Такая ситуация типична при работе на максимальной дальности дальномера (предельная дальность зависит от модели и производителя оборудования). В стандартных отражателях Seco точность призменного блока такова, что отклонение отражённого луча не превышает 5 угловых секунд . Имеются также призмы с более высокой точностью для прецизионных работ.

Точность сборки призменной системы

На точность отражателя также влияет положение блока призм в корпусе и положение корпуса относительно держателя. Точность позиционирования деталей относительно друг друга в отражательных системах SECO - менее 1 мм .

Для проверки величины отклонения луча призмы и контроля соответствия стандартам компания SECO использует интерферометр ZYGO GPI-XP/D . Сертификат соответствия доступен по дополнительному запросу. Обращайтесь к нам для получения дополнительной информации.

«Статья написана по материалам компании Seco. Оригинал статьи на английском языке, можно найти на сайте Surveying.com и в печатных и электронных документах компании Seco»

Постоянная Больцмана перекидывает мост из макромира в микромир, связывая температуру с кинетической энергией молекул.

Людвиг Больцман — один из создателей молекулярно-кинетической теории газов, на которой зиждется современная картина взаимосвязи между движением атомов и молекул с одной стороны и макроскопическими свойствами материи, такими как температура и давление, с другой. В рамках такой картины давление газа обусловлено упругими ударами молекул газа о стенки сосуда, а температура — скоростью движения молекул (а точнее, их кинетической энергией).Чем быстрее движутся молекулы, тем выше температура.

Постоянная Больцмана дает возможность напрямую связать характеристики микромира с характеристиками макромира — в частности, с показаниями термометра. Вот ключевая формула, устанавливающая это соотношение:

1/2 mv 2 = kT

где m и v — соответственно масса и средняя скорость движения молекул газа, Т — температура газа (по абсолютной шкале Кельвина), а k — постоянная Больцмана. Это уравнение прокладывает мостик между двумя мирами, связывая характеристики атомного уровня (в левой части) с объемными свойствами (в правой части), которые можно измерить при помощи человеческих приборов, в данном случае термометров. Эту связь обеспечивает постоянная Больцмана k , равная 1,38 x 10 -23 Дж/К.

Раздел физики, изучающий связи между явлениями микромира и макромира, называется статистическая механика. В этом разделе едва ли найдется уравнение или формула, в которых не фигурировала бы постоянная Больцмана. Одно из таких соотношений было выведено самим австрийцем, и называется оно просто уравнение Больцмана :

S = k log p + b

где S — энтропия системы (см. Второе начало термодинамики), p — так называемый статистический вес (очень важный элемент статистического подхода), а b — еще одна константа.

Всю жизнь Людвиг Больцман в буквальном смысле опережал свое время, разрабатывая основы современной атомной теории строения материи, вступая в яростные споры с подавляющим консервативным большинством современного ему научного сообщества, считавшего атомы лишь условностью, удобной для расчетов, но не объектами реального мира. Когда его статистический подход не встретил ни малейшего понимания даже после появления специальной теории относительности, Больцман в минуту глубокой депрессии покончил с собой. Уравнение Больцмана высечено на его надгробном памятнике.

Boltzmann, 1844-1906

Австрийский физик. Родился в Вене в семье госслужащего. Учился в Венском университете на одном курсе с Йозефом Стефаном (см. Закон Стефана—Больцмана). Защитившись в 1866 году, продолжил научную карьеру, занимая в разное время профессорские должности на кафедрах физики и математики университетов Граца, Вены, Мюнхена и Лейпцига. Будучи одним из главных сторонников реальности существования атомов, сделал ряд выдающихся теоретических открытий, проливающих свет на то, каким образом явления на атомном уровне сказываются на физических свойствах и поведении материи.


Постоянная Хаббла – это константа, используемая для описания расширения Вселенной. Она устанавливает связь между удаленностью космического объекта и скоростью его удаления. становится все больше и больше с тех пор, как начал расширяться с момента Большого Взрыва, произошедшего 13,82 миллиарда лет назад. Вселенная постоянно расширяется, и это расширение постоянно ускоряется.

По утверждению НАСА , у ученых существует не только интерес к самому расширению и его ускорению, но и к последствиям этого процесса. Если расширение вдруг начинает замедляться, это будет означать, что во Вселенной есть что-то, что замедляет ее рост – возможно, это гипотетическая темная материя, которая не может быть обнаружена современными инструментами. Если расширение Вселенной будет продолжать ускоряться, возможно, что именно темная материя несет ответственность за это явление. В общем, ученым пока не понятен механизм, заставляющий пространство менять свой объем. Но во всем виновата, несомненно, темная материя (поскольку она не обнаружена, а значит все непонятное в космосе можно списать на нее).

По состоянию на январь 2018 года измерения, полученные с нескольких телескопов показали, что скорость расширения Вселенной различается в зависимости от того, куда смотреть. Ближняя к нам часть Вселенной (исследуется с помощью орбитальных телескопов «Хаббл» и «Гайя») имеет скорость расширения около 73,5 километров в секунду на мегапарсек. В то время как более отдаленная Вселенная (измеряется космическим телескопом «Планк») расширяется немного медленнее, со скоростью около 67 км в секунду на мегапарсек. Мегапарсек – это расстояние в один миллион парсеков, или около 3,3 миллиона световых лет, так что это немыслимо большая скорость.

Открытие Хаббла

Постоянная была впервые предложена американским астрономом . Он занимался изучением галактик, и особенно его интересовали те, которые находятся наиболее далеко от Земли.

В 1929 году, на основании данных, полученных астрономом , говорящих о том, что галактики, похоже, удаляются от Млечного Пути, Хаббл обнаружил, что чем дальше эти галактики с Земли, тем быстрее они движутся.

В то время ученые решили, что это явление – это всего лишь разлет галактик друг от друга. Однако сегодня астрономы знают, что на самом деле наблюдается расширение всей Вселенной. Независимо от того, где вы будете находиться в космосе , вы будете наблюдать одно и то же явление, происходящее с той же самой скоростью.

Первоначальные расчеты Хаббла уточнялись на протяжении многих лет, поскольку для проведения измерений использовались все более чувствительные телескопы, в том числе «Хаббл» и «Гайя», данные с которых уточняли значение постоянной на основе измерений космического микроволнового фона – постоянного температурного фона Вселенной, иногда еще называемый «послесвечением» Большого Взрыва.

Цефеиды – маяки Вселенной

Существует много видов переменных звезд, но те, которые наиболее полезны для уточнения значения постоянной Хаббла, называется цефеидами. Это звезды, которые регулярно меняют свою яркость в определенном интервале, который обычно колеблется от 1 до 100 дней (Полярная Звезда входит в число самых известных членов этой группы). проводят измерения расстояния до этих звезд, измеряя изменчивость их светимости.

Чем ярче выглядит цефеида с , тем легче измерить расстояние до нее. Некоторые цефеиды можно увидеть с Земли, но для получения более точных измерений лучше всего это делать в космосе.

Эдвин Хаббл смог измерить расстояния до цефеид, удаленных на расстояния до 900 000 световых лет от Земли – поразительное значение на то время – находящихся в пространстве, которое было все еще относительно близким к Земле. Дальше в пространстве цефеиды слабеют и их видно все меньше. Лишь запуск космического телескопа «Хаббл» смог изменить ситуацию в 1990-х годах. В 2013 году появился космический телескоп «Гайя», которому удалось точно определить позиции и светимость около 1 . Его данные также помогли уточнить значение постоянной Хаббла.

Однако цефеиды не идеальны для измерения космических расстояний. Они часто расположены в пыльных областях (которые затеняют некоторые длины волн на снимках). А более отдаленные из них – трудно обнаружить, потому что они слабо светятся с нашей точки зрения.

По словам Шоко Сакаи, научного сотрудника Национальной оптической астрономической обсерватории, астрономами используются и другие методы, которые дополняют измерения расстояний до цефеид, такие как например, отношение Талли-Фишера, использующее обнаруженную корреляцию между яркостью спиральной и скоростью ее вращения. «Идея состоит в том, что чем больше галактика, тем быстрее она вращается», – писал он. «Это означает, что если вы знаете скорость вращения спиральной галактики, вы можете определить, используя зависимость Талли-Фишера, ее внутреннюю яркость. Сравнивая внутреннюю яркость с кажущейся величиной (той, на самом деле наблюдается – потому что чем дальше галактика, тем она становится «темнее»), можно рассчитать расстояние до нее».