Уран в чистом виде. Урановая руда

Уран (U) — элемент с атомным номером 92 и атомным весом 238,029. Является радиоактивным химическим элементом III группы периодической системы Дмитрия Ивановича Менделеева, относится к семейству актиноидов. Уран — очень тяжёлый (в 2,5 раза тяжелее железа, более чем в 1,5 раза тяжелее свинца), серебристо-белый глянцевитый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами.

Природный уран состоит из смеси трех изотопов: 238U (99,274 %) с периодом полураспада 4,51∙109 лет; 235U (0,702 %) с периодом полураспада 7,13∙108 лет; 234U (0,006 %) с периодом полураспада 2,48∙105 лет. Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238U. Изотопы урана 238U и 235U являются родоначальниками двух радиоактивных рядов. Конечными элементами этих рядов являются изотопы свинца 206Pb и 207Pb.

В настоящее время известно 23 искусственных радиоактивных изотопов урана с массовыми числами от 217 до 242. «Долгожителем» среди них является 233U с периодом полураспада 1,62∙105 лет. Он получается в результате нейтронного облучения тория, способен к делению под воздействием тепловых нейтронов.

Уран открыт в 1789 году немецким химиком Мартином Генрихом Клапротом в результате его опытов с минералом настуран — «урановая смолка». Название новый элемент получил в честь недавно открытой (1781) Уильямом Гершелем планеты — Уран. Последующие полвека полученное Клапротом вещество считалось металлом, однако в 1841 году это опроверг французский химик Эжен Мелькиор Пелиго, который доказал окисную природу урана (UO2), полученного немецким химиком. Самому Пелиго удалось получить металлический уран при восстановлении UCl4 металлическим калием, а так же определить атомный вес нового элемента. Следующим в развитии знаний об уране и его свойствах был Д. И. Менделеев — в 1874 году, опираясь на разработанную им теорию о периодизации химических элементов, он поместил уран в самой дальней клетке своей таблицы. Определенный ранее Пелиго атомный вес урана (120) русский химик удвоил, верность таких предположений была подтверждена через двенадцать лет опытами немецкого химика Циммермана.

На протяжении многих десятилетий уран представлял интерес лишь для узкого круга химиков и естествоиспытателей, применение его также было ограничено — производство стекла и красок. Только с открытием радиоактивности этого металла (в 1896 году Анри Беккерелем) началась промышленная переработка урановых руд с 1898 года. Гораздо позже (1939 год) было открыто явление деления ядер, и с 1942 года уран стал основным ядерным топливом.

Важнейшее свойство урана состоит в том, что ядра некоторых его изотопов способны к делению при захвате нейтронов, в результате такого процесса выделяется громадное количество энергии. Это свойство элемента № 92 используется в ядерных реакторах, служащих источниками энергии, а также лежит в основе действия атомной бомбы. Уран используют в геологии для определения возраста минералов и горных пород с целью выяснения последовательности протекания геологических процессов (геохронология). В связи с тем, что горные породы содержат различные концентрации урана, они обладают различной радиоактивностью. Это свойство используется при выделении горных пород геофизическими методами. Наиболее широко этот метод применяется в нефтяной геологии при геофизических исследованиях скважин. Соединения урана применялись как краски для живописи по фарфору и для керамических глазурей и эмалей (окрашивают в цвета: жёлтый, бурый, зелёный и чёрный, в зависимости от степени окисления), например уранат натрия Na2U2O7 использовался как жёлтый пигмент в живописи.

Биологические свойства

Уран довольно распространенный элемент в биологической среде, концентраторами этого металла считаются некоторые виды грибов и водорослей, которые входят в цепочку биологического круговорота урана в природе по схеме: вода — водные растения - рыба - человек. Таким образом, с пищей и водой уран попадает в организм человека и животных, а точнее в желудочно-кишечный тракт, где всасывается около процента от поступивших легкорастворимых соединений и не более 0,1 % труднорастворимых. В дыхательные пути и легкие, а также в слизистые оболочки и кожные покровы этот элемент попадает с воздухом. В дыхательных путях, а особенно легких усвоение происходит гораздо интенсивнее: легкорастворимые соединения всасываются на 50 %, а труднорастворимые на 20 %. Таким образом, уран обнаруживается в небольших количествах (10-5 - 10-8 %) в тканях животных и человека. В растениях (в сухом остатке) концентрация урана зависит от его содержания в почве, так при почвенной концентрации 10-4 % в растении содержится 1,5∙10-5 % и менее. Распределение урана по тканям и органам неравномерно, основные места скопления - это костные ткани (скелет), печень, селезенка, почки, а также легкие и бронхо-легочные лимфатические узлы (при попадании в легкие труднорастворимых соединений). Из крови уран (карбонаты и комплексы с белками) довольно быстро выводится. В среднем содержание 92-го элемента в органах и тканях животных и человека составляет 10-7 %. К примеру, в крови крупнорогатого скота содержится 1∙10-8 г/мл урана, в человеческой крови 4∙10-10 г/г. Печень КРС содержит 8∙10-8 г/г, у человека в том же органе 6∙10-9 г/г; селезенка КРС содержит 9∙10-8 г/г, у человека - 4,7∙10-7 г/г. В мышечных тканях крупнорогатого скота накапливается до 4∙10-11 г/г. Кроме того, в человеческом организме уран содержится в легких в пределах 6∙10-9 - 9∙10-9 г/г; в почках 5,3∙10-9 г/г (корковый слой) и 1,3∙10-8 г/г (мозговой слой); в костной ткани 1∙10-9 г/г; в костном мозге 1∙10-8 г/г; в волосах 1,3∙10-7 г/г. Находящийся в костях уран обуславливает постоянное облучение костной ткани (период полного выведения урана из скелета 600 суток). Менее всего этого металла в головном мозге и сердце (около 10-10 г/г). Как говорилось ранее основные пути поступления урана в организм - вода, пища и воздух. Суточная доза поступающего в организм металла с пищей и жидкостями составляет 1,9∙10-6 г, с воздухом - 7∙10-9 г. Однако, каждые сутки уран выводится из организма: с мочой от 0,5∙10-7 г до 5∙10-7 г; с калом от 1,4∙10-6 г до 1,8∙10-6 г. Потери с волосами, ногтями и отмершими чешуйками кожи - 2∙10-8 г.

Ученые предполагают, что уран в мизерных количествах необходим для нормального функционирования организма человека, животных и растений. Однако его роль в физиологии до сих пор не выяснена. Установлено, что среднее содержание 92-го элемента в организме человека составляет порядка 9∙10-5 г (Международная комиссия по радиационной защите). Правда, эта цифра несколько колеблется для различных районов и территорий.

Несмотря на свою пока еще не известную, но определенную биологическую роль в живых организмах, уран остается одним из опаснейших элементов. В первую очередь это проявляется в токсическом действии данного металла, что обусловлено его химическими свойствами, в частности от растворимости соединений. Так, например, более токсичны растворимые соединения (уранил и другие). Чаще всего отравления ураном и его соединениями происходят на обогатительных фабриках, предприятиях по добыче и переработке уранового сырья и других производственных объектах, где уран участвует в технологических процессах.

Проникая в организм, уран поражает абсолютно все органы и их ткани, ведь действие происходит на уровне клетки: он подавляет активность ферментов. Первично поражаются почки, что проявляется в резком увеличении сахара и белка в моче, впоследствии развивается олигурия. Поражению подвергается ЖКТ и печень. Отравления ураном подразделяются на острые и хронические, причем последние развиваются постепенно и могут протекать бессимптомно или со слабо выраженными проявлениями. Однако в последствии хронические отравления приводят к нарушениям кроветворения, нервной системы и прочим серьезным нарушениям здоровья.

В тонне гранитной породы содержится примерно 25 грамм урана. Энергия, способная выделиться при сгорании в реакторе этих 25 грамм, сравнима с энергией, которая выделяется при сгорании 125 тонн каменного угля в топках мощных тепловых котлов! Исходя из этих данных, можно предположить, что в недалеком будущем гранит станут считать одним из видов минерального топлива. Всего же в относительно тонком двадцатикилометровом поверхностном слое земной коры содержится примерно 1014 тонн урана, при переводе в энергетический эквивалент получается просто колоссальная цифра — 2,36.1024 киловатт-часов. Даже все вместе взятые разрабатываемые, разведанные и предполагаемые месторождения горючих ископаемых не способны дать и миллионной доли этой энергии!

Известно, что урановые сплавы, подвергнутые термической обработке, отличаются большими пределами текучести, ползучести и повышенной коррозионной стойкостью, меньшей склонностью к формоизменению изделий при колебаниях температуры и под воздействием облучения. Исходя из этих принципов, в начале XX века и вплоть до тридцатых годов уран в виде карбида применяли в производстве инструментальных сталей. Кроме того, он шел на замену вольфрама в некоторых сплавах, что было дешевле и доступнее. В производстве ферроурана доля U составляла до 30 %. Правда во второй трети XX века такое применение урана сошло на нет.

Как известно в недрах нашей Земли идет постоянный процесс распада изотопов урна. Так вот, учеными было подсчитано, что мгновенное высвобождении энергии всей массы этого металла, заключенного в земную оболочку, разогрело бы нашу планету до температуры в несколько тысяч градусов! Однако такое явление, к счастью, невозможно - ведь выделение тепла идет постепенно - по мере того, как ядра урана и его производных проходят ряд радиоактивных длительных превращений. О продолжительности таких преобразований можно судить по периодам полураспадов природных изотопов урана, например, для 235U он равен 7 108 лет, а для 238U - 4,51 109 лет. Тем не менее, урановое тепло значительно подогревает Землю. Если бы во всей массе Земли было бы столько же урана, как в верхнем двадцатикилометровом слое, то температура на планете была бы значительно выше, чем сейчас. Однако при продвижении к центру Земли концентрация урана снижается.

В ядерных реакторах отрабатывается лишь незначительная часть загруженного урана, связано это с зашлаковыванием топлива продуктами деления: 235U выгорает, цепная реакция постепенно затухает. Однако ТВЭЛы по-прежнему заполнены ядерным горючим, которое необходимо снова употребить. Для этого старые тепловыделяющие элементы демонтируют и отправляют на переработку - их растворяют в кислотах, а уран извлекают из получившегося раствора методом экстракции, осколки деления, от которых нужно избавиться, остаются в растворе. Таким образом, получается, что урановая промышленность практически безотходное химическое производство!

Заводы по разделению изотопов урана занимают территорию в несколько десятков гектаров, примерно такого же порядка и площадь пористых перегородок в разделительных каскадах завода. Это связано со сложностью диффузионного метода разделения изотопов урана - ведь для того чтобы повысить концентрацию 235U от 0,72 до 99 % необходимо несколько тысяч диффузионных ступеней!

Ураново-свинцовым методом геологам удалось узнать возраст самых древних минералов, при исследовании метеоритных пород удалось определить примерную дату зарождения нашей планеты. Благодаря «урановым часам» определили возраст лунного грунта. Что интересно, оказалось, что уже в течение 3 млрд лет на Луне нет вулканической деятельности и естественный спутник Земли остается пассивным телом. Ведь даже самые молодые куски лунного вещества прожили срок больше возраста древнейших земных минералов.

История

Использование урана началось очень давно — еще в I веке до нашей эры природная окись урана использовалась для изготовления жёлтой глазури, использовавшейся при окраске керамики.

В новое время изучение урана происходило постепенно - несколькими этапами, с непрерывным нарастанием. Началом послужило открытие этого элемента в 1789 году немецким натурфилософом и химиком Мартином Генрихом Клапротом, который восстановил добытую из саксонской смоляной руды («урановая смолка») золотисто-жёлтую «землю» до чёрного металлоподобного вещества (оксид урана - UO2). Название было дано в честь самой далёкой из известных в те времена планет - Урана, которую в свою очередь открыл в 1781 году Уильям Гершель. На этом первый этап в изучении нового элемента (Клапрот был уверен в том, что он открыл новый металл) заканчивается, наступает перерыв более чем на пятьдесят лет.

1840 год можно считать началом новой вехи в истории изучения урана. Именно с этого года проблемой получения металлического урана занялся молодой химик из Франции Эжен Мелькиор Пелиго (1811-1890), вскоре (1841) ему это удалось - металлический уран был получен при восстановлении UCl4 металлическим калием. Кроме того, он доказал, что открытый Клапротом уран на самом деле всего лишь его оксид. Также француз определил предположительный атомный вес нового элемента - 120. Затем вновь наступает длительный перерыв в изучении свойств урана.

Лишь в 1874 году появляются новые предположения о природе урана: Дмитрий Иванович Менделеев, следуя разработанной им теории о периодизации химических элементов, находит место новому металлу в своей таблице, размещая уран в последней клетке. Кроме того, Менделеев увеличивает ранее предполагаемый атомный вес урана в двое, не ошибившись и в этом, что подтвердили опыты немецкого химика Циммермана 12 лет спустя.

С 1896 года открытия в области изучения свойств урана «посыпались» одно за другим: в упомянутом выше году совершенно случайно (при исследовании фосфоресценции кристаллов уранилсульфата калия) 43-летний профессор физики Антуан Анри Беккерель открывает «Лучи Беккереля», впоследствии переименованные в радиоактивность Марией Кюри. В том же году Анри Муассан (вновь химик из Франции) разрабатывает способ получения чистого металлического урана.

В 1899 году Эрнестом Резерфордом была обнаружена неоднородность излучения урановых препаратов. Выяснилось, что есть два вида излучения - альфа- и бета-лучи, различные по своим свойствам: они несут различный электрический заряд, имеют различную длину пробега в веществе и ионизирующая способность их также различна. Годом позже были обнаружены и гамма-лучи Полем Вийаром.

Эрнест Резерфорд и Фредерик Содди совместно разработали теорию радиоактивности урана. На основе этой теории в 1907 году Резерфорд предпринял первые опыты по определению возраста минералов при изучении радиоактивных урана и тория. В 1913 году Ф. Содди ввёл понятие об изотопах (от древне-греческого изо - «равный», «одинаковый», и топос - «место»). В 1920 году этот же ученый предположил, что изотопы можно использовать для определения геологического возраста горных пород. Его предположения оказались верны: в 1939 г. Aльфред Oтто Карл Нир оздал первые уравнения для расчёта возраста и применил масс-спектрометр для разделения изотопов.

В 1934 году Энрико Ферми провел ряд опытов по бомбардировке химических элементов нейтронами - частицами, открытыми Дж. Чедвиком в 1932 году. В результате этой операции в уране появлялись неизвестные прежде радиоактивные вещества. Ферми и другие ученые, участвовавшие в его опытах, предположили, что им удалось открыть трансурановые элементы. В течение четырех лет предпринимались попытки обнаружения трансурановых элементов среди продуктов нейтронного обстрела. Закончилось все в 1938 году, когда немецкие химики Отто Ган и Фриц Штрассман установили, что, захватывая свободный нейтрон, ядро изотопа урана 235U делится, при этом выделяется (в расчете на одно ядро урана) достаточно большая энергия, в основном, за счёт кинетической энергии осколков и излучения. Продвинутся дальше, немецким химикам не удалось. Обосновать их теорию смогли Лиза Мейтнер и Отто Фриш. Это открытие было истоком использования внутриатомной энергии, как в мирных, так и в военных целях.

Нахождение в природе

Среднее содержание урана в земной коре (кларк) 3∙10-4 % по массе, это означает, что его больше в недрах земли, чем серебра, ртути, висмута. Уран характерный элемент для гранитного слоя и осадочной оболочки земной коры. Так, в тонне гранита — около 25 грамм элемента № 92. Всего в относительно тонком, двадцатикилометровом, верхнем слое Земли заключено более 1000 тонн урана. В кислых изверженных породах 3,5∙10-4 %, в глинах и сланцах 3,2∙10-4 %, особенно обогащённых органикой, в основных породах 5∙10-5 %, в ультраосновных породах мантии 3∙10-7 %.

Уран энергично мигрирует в холодных и горячих, нейтральных и щелочных водах в виде простых и комплексных ионов, особенно в форме карбонатных комплексов. Немаловажную роль в геохимии урана играют окислительно-восстановительные реакции, все потому, что соединения урана, как правило, хорошо растворимы в водах с окислительной средой и плохо растворимы в водах с восстановительной средой (сероводородах).

Известно более сотни минеральных руд урана, они различны по химическому составу, происхождению, концентрации урана, из всего многообразия лишь дюжина представляет практический интерес. Основными представителями урана, имеющими наибольшее промышленное значение, в природе можно считать окислы - уранинит и его разновидности (настуран и урановая чернь), а также силикаты - коффинит, титанаты - давидит и браннерит; водные фосфаты и арсенаты уранила - урановые слюдки.

Уранинит - UO2 присутствует преимущественно в древних - докембрийских породах в виде четких кристаллических форм. Уранинит образует изоморфные ряды с торианитом ThO2 и иттро-церианитом (Y,Ce)O2. Кроме того, все ураниниты содержат продукты радиогенного распада урана и тория: K, Po, He, Ac, Pb, а также Ca и Zn. Собственно уранинит - высокотемпературный минерал, характерен для гранитных и сиенитовых пегматитов в ассоциации со сложными ниобо-тантало-титанатами урана (колумбит, пирохлор, самарскит и другие), цирконом, монацитом. Кроме того, уранинит встречается в гидротермальных, скарновых и осадочных породах. Крупные месторождения уранинита известны в Канаде, Африке, Соединенных Штатах Америки, Франции и Австралии.

Настуран (U3O8), он же урановая смолка или смоляная обманка, образующий скрытокристаллические колломорфные агрегаты - вулканогенный и гидротермальный минерал, представлен в палеозойских и более молодых высоко- и среднетемпературных образованиях. Постоянные спутники настурана – сульфиды, арсениды, самородные висмут, мышьяк и серебро, карбонаты и некоторые другие элементы. Эти руды очень богаты ураном, но крайне редко встречаются, зачастую в сопровождении радия, это легко объяснимо: радий является прямым продуктом изотопного распада урана.

Урановые черни (рыхлые землистые агрегаты) представлены в основном в молодых - кайнозойских и моложе образованиях, характерны для гидротермальных сульфидно-урановых и осадочных месторождений.

Также уран извлекается в виде побочного продукта из руд, содержащих менее 0,1 %, например, из золотоносных конгломератов.

Основные месторождения урановых руд расположены в США (Колорадо, Северная и Южная Дакота), Канаде (провинции Онтарио и Саскачеван), ЮАР (Витватерсранд), Франции (Центральный массив), Австралии (Северная территория) и многих других странах. В России основным урановорудным регионом является Забайкалье. На месторождении в Читинской области (около города Краснокаменск) добывается около 93 % российского урана.

Применение

Современная атомная энергетика просто немыслима без элемента № 92 и его свойств. Хотя еще не так давно — до пуска первого ядерного реактора урановые руды добывались в основном для извлечения из них радия. Небольшие количества урановых соединений использовали в некоторых красителях и катализаторах. По сути дела, уран считался элементом, который не имеет почти никакого промышленного значения, и как кардинально изменилась ситуация после открытия способности изотопов урана к делению! Этот металл мгновенно получил статус стратегического сырья № 1.

В наше время основная область применения металлического урана, так же как и его соединений - топливо для ядерных реакторов. Так в стационарных реакторах АЭС применяется малообогащенная (природная) смесь изотопов урана, а в силовых ядерных установках и в реакторах на быстрых нейтронах используется уран высокой степени обогащения.

Наибольшее применение имеет изотоп урана 235U, ведь в нем возможна самоподдерживающаяся цепная ядерная реакция, что не характерно для других изотопов урана. Благодаря именно этому свойству 235U используется как топливо в ядерных реакторах, а также в ядерном оружии. Однако выделение изотопа 235U из природного урана - сложная и дорогостоящая технологическая проблема.

Самый распространенный в природе изотоп урана 238U может делиться, если его бомбардируют высокоэнергетическими нейтронами. Такое свойство данного изотопа используют для увеличения мощности термоядерного оружия - используются нейтроны, порождённые термоядерной реакцией. Кроме того, из изотопа 238U получают изотоп плутония 239Pu, который в свою очередь также может использоваться в ядерных реакторах и в атомной бомбе.

В последнее время большое применение находит искусственно получаемый в реакторах из тория изотоп урана 233U, его получают, облучая в нейтронном потоке ядерного реактора торий:

23290Th + 10n → 23390Th -(β–)→ 23391Pa –(β–)→ 23392U

233U делится тепловыми нейтронами, кроме того, в реакторах с 233U может происходить расширенное воспроизводство ядерного горючего. Так при выгорании в ториевом реакторе килограмма 233U в нем же должно накопиться 1,1 кг нового 233U (в результате захвата нейтронов ядрами тория). В ближайшем будущем уран-ториевый цикл в реакторах на тепловых нейтронах - главный конкурент уран-плутониевого цикла воспроизводства ядерного горючего в реакторах на быстрых нейтронах. Уже сейчас существуют и работают реакторы, использующие этот нуклид в качестве топлива (KAMINI в Индии). 233U также является наиболее перспективным топливом для газофазных ядерных ракетных двигателей.

Другие искусственные изотопы урана не играют заметной роли.

После того, как из природного урана извлекают «нужные» изотопы 234U и 235U, оставшееся сырье (238U) носит название «обеднённый уран», он в два раза менее радиоактивен, чем природный уран, в основном за счёт удаления из него 234U. Так как основное использование урана - производство энергии, по этой причине обедненный уран - малополезный продукт с низкой экономической ценностью. Однако из-за своей низкой цены, а также большой плотности и чрезвычайно высокого сечения захвата он используется для радиационной защиты, и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. Кроме того, обедненный уран применяется как балласт в космических спускаемых аппаратах и гоночных яхтах; в высокоскоростных роторах гироскопов, больших маховиках, при бурении нефтяных скважин.

Однако самое известное применение обедненного урана - это использование его в военных целях - в качестве сердечников для бронебойных снарядов и современной танковой броне, например, танка M-1 «Абрамс».

Менее известные области применения урана в основном связаны с его соединениями. Так малая добавка урана придаёт красивую жёлто-зелёную флуоресценцию стеклу, некоторые соединения урана светочувствительны, по этой причине уранилнитрат широко применялся для усиления негативов и окрашивания (тонирования) позитивов (фотографических отпечатков) в бурый цвет.

Карбид 235U в сплаве с карбидом ниобия и карбидом циркония применяется в качестве топлива для ядерных реактивных двигателей. Сплавы железа и обеднённого урана (238U) применяются как мощные магнитострикционные материалы. Уранат натрия Na2U2O7 использовался как жёлтый пигмент в живописи, ранее соединения урана применялись как краски для живописи по фарфору и для керамических глазурей и эмалей (окрашивают в цвета: жёлтый, бурый, зелёный и чёрный, в зависимости от степени окисления).

Производство

Уран получают из урановых руд, которые значительно различаются по ряду признаков (по условиям образования, по «контрастности», по содержанию полезных примесей и др.), основным из которых является процентное содержание урана. Согласно этому признаку различают пять сортов руд: очень богатые (содержат свыше 1 % урана); богатые (1-0,5 %); средние (0,5-0,25 %); рядовые (0,25-0,1 %) и бедные (менее 0,1 %). Однако даже из руд, содержащих 0,01-0,015 % урана, этот металл извлекается в качестве побочного продукта.

За годы освоения уранового сырья разработано немало способов выделения урана из руд. Это связано и со стратегическим значением урана в некоторых областях, и с разнообразием его природных проявлений. Однако, несмотря на все разнообразие методов, и сырьевой базы, любое урановое производство состоит из трех стадий: предварительное концентрирование урановой руды; выщелачивание урана и получение достаточно чистых соединений урана осаждением, экстракцией или ионным обменом. Далее в зависимости от назначения получаемого урана, следует обогащение продукта изотопом 235U или сразу же восстановление элементарного урана.

Итак, первоначально происходит концентрирование руды — порода измельчается и заливается водой. При этом более тяжелые элементы смеси осаждаются быстрее. В породах, содержащих первичные минералы урана, происходит их быстрое осаждение, так как они весьма тяжелы. При концентрировании руд, содержащих вторичные минералы урана, происходит осаждение пустой породы, которая гораздо тяжелее вторичных минералов, но может содержать весьма полезные элементы.

Урановые руды почти не обогащаются, исключением является органический способ радиометрической сортировки, основанной на γ-излучении радия, всегда сопутствующего урану.

Следующая стадия в урановом производстве - это выщелачивание, таким образом, происходит переход урана в раствор. В основном руды выщелачивают растворами серной, иногда азотной кислот или растворами соды с переводом урана в кислый раствор в виде UO2SO4 или комплексных анионов , а в содовый раствор - в виде 4- комплексного аниона. Метод, при котором применяется серная кислота - дешевле, однако, он не всегда применим - если сырье содержит четырехвалентный уран (урановая смолка), который не растворяется в серной кислоте. В таких случаях используют щелочное выщелачивание или окисляют четырехвалентный уран до шестивалентного состояния. Использование каустической соды (едкого натра) целесообразно при выщелачивании руды, содержащей магнезит или доломит, на растворение которых требуется слишком много кислоты.

После стадии выщелачивания раствор содержит не только уран, но и другие элементы, которые так же, как и уран экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. В такой ситуации для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, дабы на разных стадиях исключать нежелательный элемент. Одно из преимуществ методов ионного обмена и экстракции - достаточно полно извлекается уран из бедных растворов.

После всех перечисленных операций уран переводят в твердое состояние - в один из окислов или в тетрафторид UF4. Такой уран содержит примеси с большим сечением захвата тепловых нейтронов - литий, бор, кадмий, редкоземельные металлы. В конечном продукте их содержание не должно превышать стотысячных и миллионных долей процента! Для этого снова уран растворяется, в этот раз уже в азотной кислоте. Уранилнитрат UO2(NO3)2 при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают) и начинают осторожно прокаливать. В результате этой операции образуется трехокись урана UO3, которую восстанавливают водородом до UO2. При температуре от 430 до 600° C окись урана реагирует с сухим фтористым водородом и превращается в тетрафторид UF4. Уже из этого соединения обычно получают металлический уран с помощью кальция или магния обычным восстановлением.

Физические свойства

Металлический уран — очень тяжелый, он тяжелее железа в два с половиной раза, а свинца - в полтора! Это один из самых тяжелых элементов, которые хранятся в недрах Земли. Своим серебристо-белым цветом и блеском уран напоминает сталь. Чистый металл пластичен, мягок, имеет высокую плотность, но в тоже время легко поддается обработке. Уран электроположителен, обладает незначительными парамагнитными свойствами - удельная магнитная восприимчивость при комнатной температуре 1,72·10 -6 , имеет малую электропроводность, но высокую реакционную способность. Этот элемент имеет три аллотропических модификации: α, β и γ. α-форма имеет ромбическую кристаллическую решетку со следующими параметрами: a = 2,8538 Å, b = 5,8662 Å, с = 4б9557 Å. Эта форма стабильна в температурном коридоре от комнатных температур до 667,7° C. Плотность урана в α-форме при температуре 25° C составляет 19,05 ±0,2 г/см 3 . β-форма имеет тетрагональную кристаллическую решетку, стабильна в интервале температур от 667,7° C до 774,8° C. Параметры четырехугольной решетки: a = 10,759 Å, b = 5,656 Å. γ-форма с объемно-центрированной кубической структурой, стабильна от 774,8° C до точки плавления (1132° C).

Увидеть все три фазы можно в процессе восстановления урана. Для этого используется специальный аппарат, который представляет собой стальную бесшовную трубу, которая футеруется оксидом кальция, это необходимо, чтобы сталь трубы не взаимодействовала с ураном. В аппарат загружают смесь тетрафторида урана и магния (или кальция), после чего нагревают до 600° C. При достижении этой температуры включают электрический запал, мгновенно протекает экзотермическая реакция восстановления, при этом загруженная смесь полностью плавится. Жидкий уран (температура 1132° C) за счет своего веса полностью опускается на дно. После полного осаждения урана на дно аппарата начинается охлаждение, уран кристаллизуется, его атомы выстраиваются в строгом порядке, образуя кубическую решетку - это и есть γ-фаза. Следующий переход происходит при 774° C - кристаллическая решетка остывающего металла становится тетрагональной, что соответствует β-фазе. Когда температура слитка падает до 668° C, атомы вновь перестраивают свои ряды, располагаясь волнами в параллельных слоях - α-фаза. Далее никаких изменений уже не происходит.

Основные параметры урана всегда относятся к α-фазе. Температура плавления (tпл) 1132° С, температура кипения урана (tкип) 3818° С. Удельная теплоемкость при комнатной температуре 27,67 кдж/(кг·К) или 6,612 кал/(г·° С). Удельное электрическое сопротивление при температуре 25° С примерно 3·10 -7 ом·см, а уже при 600° С 5,5·10 -7 ом·см. Теплопроводность урана также меняется в зависимости от температуры: так в интервале 100-200° С она равна 28,05 вт/(м·К) или 0,067 кал/(см·сек·° С), а при повышении до 400° С увеличивается до 29,72 вт/(м·К) 0,071 кал/(см·сек·° С). Уран обладает сверхпроводимостью при при 0,68 К. Средняя твердость по Бринеллю 19,6 - 21,6·10 2 Мн/м 2 или 200-220 кгс/мм 2 .

Многие механические свойства 92-го элемента зависят от его чистоты, от режимов термической и механической обработки. Так для литого урана предел прочности при растяжении при комнатной температуре 372-470 Мн/м 2 или 38-48 кгс/мм 2 , среднее значение модуля упругости 20,5·10 -2 Мн/м2 или 20,9·10 -3 кгс/мм 2 . Прочность урана повышается после закалки из β- и γ-фаз.

Облучение урана потоком нейтронов, взаимодействие с водой, охлаждающей топливные элементы из металлического урана, другие факторы работы в мощных реакторах на тепловых нейтронах - все это приводит к изменениям физико-механических свойства урана: металл становится хрупким, развивается ползучесть, происходит деформация изделий из металлического урана. По этой причине в ядерных реакторах используются урановые сплавы, например с молибденом, такой сплав устойчив к действию воды, упрочняет металл, сохраняя высокотемпературную кубическую решетку.

Химические свойства

В химическом отношении уран весьма активный металл. На воздухе он окисляется с образованием на поверхности радужной пленки двуокиси UO2, которая не предохраняет металл от дальнейшего окисления, как это происходит с титаном, цирконием и рядом других металлов. С кислородом уран образует двуокись UO2, трехокись UO3 и большое количество промежуточных окислов, важнейшим из которых является U3O8, по свойствам эти окислы сходны с UO2 и UO3. В порошкообразном состоянии уран пирофорен и может воспламениться при незначительном нагреве (150 °C и выше), горение сопровождается ярким пламенем, в итоге образуется U3O8. При температуре 500-600 °C уран взаимодействует с фтором с образованием малорастворимых в воде и кислотах игольчатой формы кристаллов зеленого цвета — тетрафторида урана UF4, а также UF6 - гексафторида (белые кристаллы, возгоняемые без плавления при температуре 56,4 °C). UF4, UF6 - примеры взаимодействия урана с галогенами с образованием галогенидов урана. Уран легко соединяется с серой, образуя ряд соединений, из которых наибольшее значение имеет US - ядерное горючее. С водородом уран взаимодействует при 220 °C с образованием гидрида UH3, который химически очень активен. При дальнейшем нагреве UH3 разлагается на водород и порошкообразный уран. Взаимодействие с азотом происходит при более высоких температурах - от 450 до 700 °C и атмосферном давлении получается нитрид U4N7, с повышением давления азота при тех же температурах можно получить UN, U2N3 и UN2. При более высоких температурах (750-800 °C) уран взаимодействует с углеродом с образованием монокарбида UC, дикарбида UC2, а также U2C3. Уран взаимодействует с водой с образованием UO2 и H2, причем с холодной водой медленнее, а с горячей активнее. Кроме того, реакция протекает и с водяным паром при температурах от 150 до 250 °C. Этот металл растворяется в соляной HCl и азотной HNO3 кислотах, менее активно в сильно концентрированной плавиковой кислоте, медленно реагирует с серной H2SO4 и ортофосфорной H3PO4 кислотами. Продуктами реакций с кислотами являются четырехвалентные соли урана. Из неорганических кислот и солей некоторых металлов (золото, платина, медь, серебро, олово и ртуть) уран способен вытеснять водород. Со щелочами уран не взаимодействует.

В соединениях уран способен проявлять следующие степени окисления: +3, +4, +5, +6, иногда +2. U3+ в природных условиях не существует и может быть получен только в лаборатории. Соединения пятивалентного урана по большей части не устойчивы и довольно легко разлагаются на соединения четырех и шестивалентного урана, которые являются наиболее устойчивыми. Для шестивалентного урана характерно образование иона уранила UO22+, соли которого окрашены в желтый цвет и хорошо растворимы в воде и минеральных кислотах. Примером соединений шестивалентного урана может послужить триоксид урана или урановый ангидрид UO3 (оранжевый порошок), имеющий характер амфотерного оксида. При растворении которого в кислотах образуются соли, например уранилхлорид урана UO2Cl2. При действии щелочей на растворы солей уранила получаются соли урановой кислоты H2UO4 - уранаты и двуурановой кислоты H2U2O7 - диуранаты, например, уранат натрия Na2UO4 и диуранат натрия Na2U2O7. Соли четырехвалентного урана (тетрахлорид урана UCl4) окрашены в зеленый цвет и менее растворимы. При длительном нахождении на воздухе соединения, содержащие четырехвалентный уран обычно нестабильны и обращаются в шестивалентные. Ураниловые соли, такие как уранилхлорид распадаются в присутствии яркого света или органики.

В сообщении посла Ирака в ООН Мохаммеда Али аль-Хакима от 9 июля говорится, что в распоряжение экстремистов ИГИЛ (Исламское государство Ирака и Леванта) . МАГАТЭ (Международное агентство по атомной энергии) поспешило заявить, что использованные Ираком ранее ядерные вещества имеют низкие токсические свойства, а потому захваченные исламистами материалы .

Источник в правительстве США, знакомый с ситуацией, сообщил агентству Reuters, что похищенный боевиками уран, вероятнее всего, не является обогащённым, поэтому едва ли может быть использован для изготовления ядерного оружия. Власти Ирака официально уведомили Организацию Объединённых Наций об этом инциденте и призвали «предотвратить угрозу его применения», сообщает РИА «Новости».

Соединения урана крайне опасны. О том, чем именно, а также о том, кто и как может производить ядерное топливо, рассказывает АиФ.ru.

Что такое уран?

Уран — химический элемент с атомным номером 92, серебристо-белый глянцеватый металл, периодической системе Менделеева обозначается символом U. В чистом виде он немного мягче стали, ковкий, гибкий, содержится в земной коре (литосфере) и в морской воде и в чистом виде практически не встречается. Из изотопов урана изготавливают ядерное топливо.

Уран — тяжёлый, серебристо-белый глянцеватый металл. Фото: Commons.wikimedia.org / Original uploader was Zxctypo at en.wikipedia.

Радиоактивность урана

В 1938 году немецкие физики Отто Ган и Фриц Штрассман облучили ядро урана нейтронами и сделали открытие: захватывая свободный нейтрон, ядро изотопа урана делится и выделяет огромную энергию за счёт кинетической энергии осколков и излучения. В 1939-1940 годах Юлий Харитон и Яков Зельдович впервые теоретически объяснили, что при небольшом обогащении природного урана ураном-235 можно создать условия для непрерывного деления атомных ядер, то есть придать процессу цепной характер.

Что такое обогащённый уран?

Обогащённый уран — это уран, который получают при помощи технологического процесса увеличения доли изотопа 235U в уране. В результате природный уран разделяют на обогащённый уран и обеднённый. После извлечения 235U и 234U из природного урана оставшийся материал (уран-238) носит название «обеднённый уран», так как он обеднён 235-м изотопом. По некоторым данным, в США хранится около 560 000 тонн обеднённого гексафторида урана (UF6). Обеднённый уран в два раза менее радиоактивен, чем природный, в основном за счёт удаления из него 234U. Из-за того что основное использование урана — производство энергии, обеднённый уран — малополезный продукт с низкой экономической ценностью.

В ядерной энергетике используют только обогащённый уран. Наибольшее применение имеет изотоп урана 235U, в котором возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используют как топливо в ядерных реакторах и в ядерном оружии. Выделение изотопа U235 из природного урана — сложная технология, осуществлять которую под силу не многим странам. Обогащение урана позволяет производить атомное ядерное оружие — однофазные или одноступенчатые взрывные устройства, в которых основной выход энергии происходит от ядерной реакции деления тяжёлых ядер с образованием более лёгких элементов.

Уран-233, искусственно получаемый в реакторах из тория (торий-232 захватывает нейтрон и превращается в торий-233, который распадается в протактиний-233 и затем в уран-233), может в будущем стать распространённым ядерным топливом для атомных электростанций (уже сейчас существуют реакторы, использующие этот нуклид в качестве топлива, например KAMINI в Индии) и производства атомных бомб (критическая масса около 16 кг).

Сердечник снаряда калибра 30 мм (пушки GAU-8 самолёта A-10) диаметром около 20 мм из обеднённого урана. Фото: Commons.wikimedia.org / Original uploader was Nrcprm2026 at en.wikipedia

В каких странах производят обогащённый уран?

  • Франция
  • Германия
  • Голландия
  • Англия
  • Япония
  • Россия
  • Китай
  • Пакистан
  • Бразилия

10 стран, дающих 94 % мировой добычи урана. Фото: Commons.wikimedia.org / KarteUrangewinnung

Чем опасны соединения урана?

Уран и его соединения токсичны. Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана предельно допустимая концентрация (ПДК) в воздухе 0,015 мг/м³, для нерастворимых форм урана ПДК — 0,075 мг/м³. При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Уран практически необратимо, как и многие другие тяжёлые металлы, связывается с белками, прежде всего, с сульфидными группами аминокислот, нарушая их функцию. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.

Применение урана в мирных целях

  • Небольшая добавка урана придаёт красивую жёлто-зелёную окраску стеклу.
  • Уран натрия используется как жёлтый пигмент в живописи.
  • Соединения урана применялись как краски для живописи по фарфору и для керамических глазурей и эмалей (окрашивают в цвета: жёлтый, бурый, зелёный и чёрный, в зависимости от степени окисления).
  • В начале XX века уранилнитрат широко применялся для усиления негативов и окрашивания (тонирования) позитивов (фотографических отпечатков) в бурый цвет.
  • Сплавы железа и обеднённого урана (уран-238) применяются как мощные магнитострикционные материалы.

Изотоп — разновидности атомов химического элемента, которые имеют одинаковый атомный (порядковый) номер, но при этом разные массовые числа.

Элемент III группы таблицы Менделеева, принадлежащий к актиноидам; тяжёлый слаборадиоактивный металл. Торий имеет ряд областей применения, в которых подчас играет незаменимую роль. Положение этого металла в периодической системе элементов и структура ядра предопределили его применение в области мирного использования атомной энергии.

*** Олигурия (от греч. oligos — малый и ouron — моча) — уменьшение количества отделяемой почками мочи.

Уран, элемент с порядковым номером 92, самый тяжелый из встречающихся в природе. Использовался он еще в начале нашей эры, осколки керамики с желтой глазурью (содержащие более 1% оксида урана) находились среди развалин Помпеи и Геркуланума.

Уран был открыт в 1789 году в урановой смолке немецким химиком Мартоном Генрихом Клапротом, назвавшего его в честь планеты уран, открытой в 1781. Впервые получил металлический уран французский химик Юджин Пелиго в 1841, восстановив безводный тетрахлорид урана калием. В 1896 году Антуан-Анри Беккерель открывает явление радиоактивности урана случайным засвечиванием фотопластинок ионизирующим излучением от оказавшегося поблизости кусочка соли урана.

Физические и химические свойства

Уран очень тяжелый, серебристо-белый глянцеватый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами. Уран имеет три аллотропные формы: альфа (призматическая, стабильна до 667.7 °C), бета (четырехугольная, стабильна от 667.7 до 774.8 °C), гамма (с объемно центрированной кубической структурой, существующей от 774.8 °C до точки плавления), в которых уран наиболее податлив и удобен для обработки. Альфа-фаза - очень примечательный тип призматической структуры, состоящей из волнистых слоев атомов в чрезвычайно асимметричной призматической решетке. Такая анизотропная структура затрудняет сплав урана с другими металлами. Только молибден и ниобий могут создавать с ураном твердофазные сплавы. Правда, металлический уран может вступать во взаимодействие со многими сплавами, образуя интерметаллические соеденинения.

Основные физические свойства урана:
температура плавления 1132.2 °C (+/- 0.8);
температура кипения 3818 °C;
плотность 18.95 (в альфа-фазе);
удельная теплоемкость 6.65 кал/моль/°C (25 C);
прочность на разрыв 450 МПа.

Химически уран очень активный металл. Быстро окисляясь на воздухе, он покрывается радужной пленкой оксида. Мелкий порошок урана самовоспламеняется на воздухе, он зажигается при температуре 150-175 °C, образуя U 3 O 8 . При 1000 °C уран соединяется с азотом, образуя желтый нитрид урана. Вода способна разъедать металл, медленно при низкой температуре, и быстро при высокой. Уран растворяется в соляной, азотной и других кислотах, образуя четырехвалентные соли, зато не взаимодействует с щелочами. Уран вытесняет водород из неорганических кислот и солевых растворов таких металлов как ртуть, серебро, медь, олово, платина и золото. При сильном встряхивании металлические частицы урана начинают светиться.
Уран имеет четыре степени окисления - III-VI. Шестивалентные соединения включают в себя триокись уранила UO
3 и уранилхлорид урана UO 2 Cl 2 . Тетрахлорид урана UCl 4 и диоксид урана UO 2 - примеры четырехвалентного урана. Вещества, содержащие четырехвалентный уран обычно нестабильны и обращаются в шестивалентные при длительном пребывании на воздухе. Ураниловые соли, такие как уранилхлорид распадаются в присутствии яркого света или органики.

Уран стабильных изотопов не имеет, но известно 33 его радиоактивных изотопа. Природный уран состоит из трёх радиоактивных изотопов: 238 U (99,2739%, T=4.47⋅10 9 лет, α-излучатель, родоначальник радиоактивного ряда (4n+2)), 235 U (0.7205%, T=7,04⋅10 9 лет, родоначальник радиоактивного ряда (4n+3)) и 234 U (0.0056%, T=2.48⋅10 5 лет, α-излучатель). Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238 U. Атомная масса природного урана 238,0289+0,0001.

Радиоактивность природного урана обусловлена в основном изотопами 238 U и 234 U, в равновесии их удельные активности равны. Удельная радиоактивность природного урана 0.67 микрокюри/г, разделяется практически пополам между 234 U и 238 U; 235 U вносит малый вклад (удельная активность изотопа 235 U в природном уране в 21 раз меньше активности 238 U). Природный уран достаточно радиоактивен для засвечивания фотопластинки за время около часа. Поперечное сечение захвата тепловых нейтронов 233 U 4,6·10 -27 м2, 235 U 9,8 10 -27 м2, 238 U 2,7 10 -28 м2; сечение деления 233 U 5,27·10 -26 м2, 235 U 5,84·10 -26 м2, природной смеси изотопов 4,2·10 -28 м2.

Изотопы урана, как правило, α-излучатели. Средняя энергия α-излучения 230 U, 231 U, 232 U, 233 U, 234 U, 235 U, 236 U, 238 U равна соответственно 5,97; 3,05⋅10 -4 ; 5,414; 4,909; 4,859; 4,679; 4,572; 4,270 МэВ. В тоже время такие изотопы, как 233 U, 238 U и 239 U помимо альфа- испытывают и другой тип распада – спонтанное деление, хотя вероятность деления намного меньше вероятности α-распада.

С точки зрения практических приложений важно, что природные изотопы 233 U и 235 U делятся под действием как тепловых, так и быстрых нейтронов ( 235 U способен к спонтанному делению), а ядра 238 U способны к делению только при захвате нейтронов с энергией более 1 МэВ. При захвате нейтронов с меньшей энергией ядра 238 U превращаются сначала в ядра 239 U, которые далее испытывают β-распад и переходят сначала в 239 Np, а затем - в 239 Pu, ядерные свойства которого близки к 235 U. Эффективные сечения захвата тепловых нейтронов ядер 234 U, 235 U и 238 U равны 98⋅10 -28 , 683⋅10 -28 и 2,7⋅10 -28 м2 соответственно. Полное деление 235 U приводит к выделению «теплового энергетического эквивалента» 2⋅10 7 кВт.ч/кг.


Техногенные изотопы урана


В современных атомных реакторах нарабатываются 11 искусственных радиоактивных изотопов с массовыми числами от 227 до 240, из которых самый долгоживущий – 233 U (T = 1,62·10 5 лет); он получается при нейтронном облучении тория. Изотопы урана с массовым числом больше 240 в реакторах не успевают образоваться. Слишком мало времени жизни урана-240, и он распадается, не успев захватить нейтрон. Однако, в сверхмощных нейтронных потоках термоядерного взрыва ядро урана за миллионную долю секунды успевает захватить до 19 нейтронов. При этом рождаются изотопы урана с массовыми числами от 239 до 257. Об их существовании узнали по появлению в продуктах термоядерного взрыва далеких трансурановых элементов – потомков тяжёлых изотопов урана. Сами «основатели рода» слишком неустойчивы к β-распаду и переходят в высшие элементы задолго до извлечения продуктов ядерных реакций из перемешанной взрывом породы.

В энергетических реакторах на тепловых нейтронах качестве ядерного топлива используют изотопы 235 U и 233 U, а в реакторах на быстрых нейтронах 238 U, т.е. изотопы, способные поддерживать цепную реакцию деления.


U-232


232 U – техногенный нуклид, в природе не встречается, α-излучатель, Т=68,9 лет, материнские изотопы 236 Pu(α), 232 Np(β+) и 232 Pa(β-), дочерний нуклид 228 Тh. Способен к спонтанному делению. 232 U имеет интенсивность спонтанного деления 0.47 делений/с⋅кг. В ядерной индустрии 232 U нарабатывается как побочный продукт при синтезе делящегося (оружейного) нуклида 233U в ториевом топливном цикле. При облучении 232 Th происходит основная реакция:


232 Th + n → 233 Th → (22.2 мин, β--распад) → 233 Pa → (27.0 дней, β--распад) → 233 U


и побочная двухстадийная реакция:


232 Th + n → 231 Th + 2n, 231 Th → (25.5 ч, β) → 231 Pa + n → 232 Pa → (1.31 дней, β) → 232 U.


Наработка 232 U в ходе двухстадийной реакции зависит от присутствия быстрых нейтронов (нужны нейтроны с энергией не менее 6 МэВ), ибо сечение первой реакции мало для тепловых скоростей. Энергиями более 6 МэВ обладает небольшое число нейтронов деления и если зона воспроизводства тория находится в такой части реактора, где она облучается умеренно быстрыми нейтронами (~ 500 кэВ) то эта реакция может быть практически исключена. Если в исходном веществе находится 230 Th, то образование 232 U дополняется реакцией: 230 Th + n → 231 Th и далее как указано выше. Эта реакция превосходно идет и с тепловыми нейтронами. Поэтому подавление образования 232 U (а это нужно по указанным ниже причинам) требует загрузки тория с минимальной концентрацией 230 Th.

Образующийся в энергетическом реакторе изотоп 232 U представляет проблему для охраны труда, поскольку он распадается на 212 Bi и 208 Te, которые излучают γ-кванты высоких энергий. Поэтому препараты, содержащие большое количество этого изотопа следует перерабатывать в горячей камере. Наличие 232 U в облучённом уране опасно и с точки зрения обращения с атомным оружием.

Накопление 232 U неизбежно при производстве 233 U в ториевом энергетическом цикле, что сдерживает внедрение его в энергетику. Необычным является то, что чётный изотоп 232 U имеет высокое сечение деления под действием нейтронов (для тепловых нейтронов 75 барн, резонансный интеграл 380), а также высокое сечение захвата нейтронов – 73 барна (резонансный интеграл 280).

Есть и польза от 232 U: он часто применяется в методе радиоактивных индикаторов в химических и физических исследованиях.


U-233



233 U открыт Сиборгом, Гофманом и Стоутоном. Уран-233 - α-излучатель, Т=1,585⋅105 лет, материнские нуклиды 237 Pu(α) 233 Np(β+) 233 Pa(β-), дочерний нуклид 229 Th. Уран-233 получается в атомных реакторах из тория: 232Th захватывает нейтрон и превращается в 233 Th, который распадается на 233 Ра, а затем в 233 U. Ядра 233 U (нечётный изотоп) способны как к спонтанному делению, так и к делению под действием нейтронов любых энергий, что делает его пригодным к производству как атомного оружия, так и реакторного топлива (возможно расширенное воспроизводство ядерного горючего). Уран-233 также является наиболее перспективным топливом для газофазных ядерных ракетных двигателей. Эффективное сечение деления быстрыми нейтронами 533 барн, период полураспада 1585000 лет, в природе не встречается. Критическая масса 233 U в три раза меньше критической массы 235 U (около 16 кг). 233 U имеет интенсивность спонтанного деления равную 720 делений/с⋅кг. 235U можно получить из 232Th, облучением нейтронами:


232 Th + n → 233 Th → (22.2 мин, β--распад) → 233 Pa → (27.0 дней, β--распад) → 233U


При поглощении нейтрона, ядро 233 U обычно делится, но изредка захватывает нейтрон, переходя в 234 U, хотя доля процессов неделения меньше, чем в других делящихся топлив ( 235 U, 239 Pu, 241 Pu) она остаётся малой при всех энергиях нейтронов. Отметим, что существует проект реактора на основе расплава солей, в котором протактиний физически изолируют, прежде чем он успеет поглотить нейтрон. Хотя 233 U, поглотив нейтрон, обычно делится, всё же он иногда сохраняет нейтрон, переходя в 234 U (этот процесс существенно менее вероятен, чем деление).

Наработка 233 U из сырья для ториевой промышленности - долгосрочная стратегия развития ядерной индустрии Индии, имеющей существенные запасы тория. Бридинг можно осуществить или в быстрых или в тепловых реакторах. Вне Индии, интерес к топливному циклу на основе тория не слишком велик, хотя мировые запасы тория в три раза превосходят запасы урана.Помимо топлива в атомных реакторах, можно использовать 233 U в оружейном заряде. Хотя сейчас это делают редко. В 1955 США проверили оружейные качества 233 U, взорвав бомбу на его основе в операции Teapot (заварной чайник). С оружейной точки зрения 233 U, сравним с 239 Pu: его радиоактивность – 1/7 (Т=159200 лет против 24100 лет у плутония), его критическая масса на 60% выше (16 кг против 10 кг), а скорость спонтанного деления выше в 20 раз (6⋅10 -9 против 3⋅10 -10 ). Однако, но так как его удельная радиоактивность ниже, то нейтронная плотность 233 U в три раза выше, чем у 239 Pu. Создание ядерного заряда на основе 233 U требует больших усилий, чем на плутонии, но технологические усилия примерно те же.

Основное различие – наличие в 233 U примеси 232 U, которая затрудняет работы с 233 U и позволяет легко обнаружить готовое оружие.

Содержание 232 U в оружейном 233 U не должно превышать 5 частей на миллион (0.0005%). В коммерческом ядерном топливном цикле наличие 232 U не представляет собой большого недостатка, даже желательно, поскольку это снижает возможность распространения урана для оружейных целей. Для экономии топлива, после его переработки и повторного использования уровень 232 U достигает 0.1-0.2%. В специально спроектированных системах этот изотоп накапливается в концентрациях 0.5-1%.

В течение первых двух лет после производства 233 U, содержащего 232 U, 228 Th сохраняется на постоянном уровне, находясь в равновесии с собственным распадом. В этом периоде фоновое значение γ-излучения устанавливается и стабилизируется. Поэтому первые несколько лет произведенная масса 233 U испускает значительное γ-излучение. Десятикилограммовая сфера 233 U оружейной чистоты (5 миллионных долей 232U) создает фон 11 миллибэр/час на расстоянии 1 м спустя 1 месяц после производства, 110

миллибэр/ч через год, 200 миллибэр/ч через 2 года. Ежегодная предельная доза в 5 бэр превышается уже через 25 часов работы с таким материалом. Даже свежий 233 U (1 месяц со дня изготовления) ограничивает время сборки десятью часами в неделю. В полностью собранном оружии уровень радиации снижают поглощением корпусом заряда. В современных облегченных устройствах снижение не превышает 10 раз, создавая проблемы с безопасностью. В более тяжеловесных зарядах поглощение более сильное - в 100 - 1000 раз. Рефлектор из бериллия увеличивает уровень нейтронного фона: 9Be + γ-квант → 8Be + n. γ-лучи 232 U образуют характерную сигнатуру, их можно обнаружить и отследить передвижения и наличие атомного заряда. Нарабатываемый по ториевому циклу специально денатурированный 233 U (0.5 - 1.0% 232 U), создает ещё большую опасность. 10-килограмовая сфера, изготовленная из такого материала, на расстоянии 1 м через 1 месяц создает фон 11 бэр/час, 110 бэр/ч через год и 200 бэр/ч через 2 года. Контакт с такой атомной бомбой, даже при сокращении излучения в 1000 раз, ограничивается 25 часами в год. Наличие заметной доли 232 U в делящемся веществе делает его крайне неудобным для военного применения.


Природные изотопы урана


U-234


Уран-234 (уран II) входит в состав природного урана (0,0055%), Т=2,445⋅10 5 лет, α-излучатель, материнские радионуклиды: 238 Pu(α), 234 Pa(β-), 234 Np(β+), дочерний изотоп в 230 Th. Содержание 234 U в руде очень незначительно из-за его сравнительно короткого периода полураспада. 234 U образуется по реакциям:


238 U → (4.51 миллиарда лет, альфа-распад) → 234 Th

234 Th → (24.1 дней, бета-распад) → 234 Pa

234 Pa → (6.75 часов, бета-распад) → 234 U


Обычно 234 U находится в равновесии с 238 U, распадаясь и образуясь с одинаковой скоростью. Однако распадающиеся атомы 238 U существуют некоторое время в виде тория и протактиния, поэтому могут химически или физически отделиться от руды (выщелачиваться подземными водами). Поскольку 234 U обладает относительно коротким временем полураспада, весь этот изотоп, находящийся в руде, образовался в последние несколько миллионов лет. Примерно половину радиоактивности природного урана составляет вклад 234 U.

Концентрация 234 U в высокообогащённом уране довольно высока из-за предпочтительного обогащения легкими изотопами. Поскольку 234 U является сильным γ-излучателем, имеются ограничения на его концентрацию в уране, предназначенном для переработки в топливо. В принципе, повышенный уровень 234 U приемлем для современных реакторов, но подвергнутое переработке отработанное топливо содержит уже неприемлемые уровни этого изотопа.

Сечение поглощения 234 U тепловых нейтронов 100 барн, а для резонансного интеграла, усреднённого по различным промежуточным нейтронам 700 барн. Поэтому в реакторах на

тепловых нейтронах он конвертируется в делящийся 235 U с большей скоростью, чем намного большее количество 238 U (с поперечным сечением 2,7 барн) конвертируется в 239 Pu. В результате, отработанное ядерное топливо содержит меньше 234 U, чем свежее.


U-235


Уран-235 (актиноуран) – изотоп, способный давать быстроразвивающуюся цепную реакцию деления. Открыт Демпстером (Arthur Jeffrey Dempster) в 1935.

Это – первый изотоп, на котором была открыта реакция вынужденного деления ядер под действием нейтронов. Поглощая нейтрон, 235 U переходит в 236 U, который делится на две части, выделяя энергию и испуская несколько нейтронов. Делящийся нейтронами любых энергий, способный к самопроизвольному делению, изотоп 235 U входит в состав природного урана (0,72%), α-излучатель (энергия 4.679 МэВ), Т=7,038⋅10 8 лет, материнские нуклиды 235 Pa, 235 Np и 239 Pu, дочерний - 231 Th. Интенсивность спонтанного деления 235 U 0.16 делений/с⋅кг. При делении одного ядра 235 U выделяется 200 МэВ энергии=3,2⋅10 -11 Дж, т.е. 18 ТДж/моль=77 ТДж/кг. Однако 5% этой энергии уносится виртуально недектируемыми нейтронами. Ядерное сечение тепловыми нейтронами составляет примерно 1000 барн, а быстрыми нейтронами – около 1 барна.

Чистая 60-килограмовая масса 235 U производит всего 9.6 делений/с, делая достаточно простой для изготовления атомной бомбы по пушечной схеме. 238 U создает в 35 раз больше нейтронов на килограмм, так что даже маленький процент этого изотопа поднимает этот показатель в несколько раз. 234 U создает в 22 раза больше нейтронов и имеет похожее с 238 U нежелательное действие. Удельная активность 235 U всего 2.1 микрокюри/г; загрязнение его 0.8% 234 U поднимают ее до 51 микрокюри/г. Критическая масса оружейного урана. (93,5% 235 U) в водных растворах составляет менее 1 кг, для открытого шара – около 50 кг, для шара с отражателем – 15 – 23 кг.

В природном уране только один, относительно редкий, изотоп подходит для изготовления ядра атомной бомбы или поддержания реакции в энергетическом реакторе. Степень обогащения по 235 U в ядерном топливе для АЭС колеблется в пределах 2-4.5%, для оружейного использования - минимум 80%, а более предпочтительно 90%. В США 235 U оружейного качества обогащен до 93.5% (промышленность способна выдать 97.65%). Такой уран используется в реакторах для военно-морского флота.

Замечание . Уран с содержанием 235 U более 85% называется оружейным ураном, с содержанием более 20% и менее 85% - ураном, годным к оружейному применению, поскольку из него можно приготовить «плохую» (неэффективную бомбу). Но из него можно изготовить и «хорошую» бомбу, если применить имплозию, нейтронные отражатели и некоторые дополненные ухищрения. К счастью, реализовать такие ухищрения на практике пока могут только 2-3 страны в мире. Сейчас, бомбы из урана, по-видимому, нигде не производятся (плутоний вытеснил уран из ядерного оружия), но перспективы урана-235 сохраняются благодаря простоте пушечной схемы урановой бомбы и возможности расширенного производства таких бомб при неожиданно возникшей необходимости.

Будучи более легким, 234 U пропорционально обогащается даже ещё в большей степени, чем 235 U во всех процессах разделения природных изотопов урана, основанных на разнице в массах, что представляет определённую проблему при производстве зарядов атомных бомб. Высокообогащенный 235 U обычно содержит 1.5-2.0% 234 U.

Деление 235 U используется в атомном оружии, для производства энергии и для синтеза важных актинидов. Уран природного состава используется в ядерных реакторах для производства нейтронов. Цепная реакция поддерживается благодаря избытку нейтронов, образующихся при делении 235 U, в то же время избыточные нейтроны, невостребованные цепной реакцией, захватываются другим природным изотопом, 238 U, что приводит к получению плутония, также способного делиться под действием нейтронов.


U-236


Встречается в природе в примесных количествах, α-излучатель, Т=2,3415⋅10 7 лет, распадается на 232 Th. Образуется при бомбардировке нейтронами 235 U, затем делится на изотоп бария и изотоп криптона с выделением двух нейтронов, гамма-лучей и высвобождением энергии.

В незначительных количествах входит в состав свежего топлива; накапливается при облучении урана нейтронами в реакторе, и потому используется как «сигнализатор» отработанного уранового ядерного топлива. 236 U образуется как побочный продукт при сепарации изотопов методом газовой диффузии в случае регенерации использованного ядерного горючего. Этот изотоп имеет определённое значение как материал для мишени в ядерных реакторах. При использовании рециклированного (переработанного) урана в атомном реакторе возникает важное отличие по сравнению с использованием природного урана. Выделенный из ОЯТ уран содержит изотоп 236 U (0,5%), который при его использовании в свежем топливе стимулирует наработку изотопа 238 Pu. Это приводит к ухудшению качества энергетического плутония, но может быть положительным фактором в контексте проблемы ядерного нераспространения.

Образующийся в энергетическом реакторе 236 U - нейтронный яд, его присутствие в ядерном топливе приходится компенсировать более высоким уровнем обогащения 235 U.


U-238


Уран-238 (уран I) - делящийся нейтронами высоких энергий (более 1 МэВ), способный к самопроизвольному делению, составляет основу природного урана (99,27%), α-излучатель, Т=4,468⋅10 9 лет, непосредственно распадается на 234 Th, образует ряд генетически связных радионуклидов, и через 18 продуктов превращается в 206 Pb. Постоянная скорость распада ряда даёт возможность использования отношения концентраций материнского нуклида к дочернему в радиометрическом датировании. Период полураспада урана-238 по спонтанному делению точно не установлен, но он очень большой – порядка 10 16 лет, так что вероятность деления по отношению к основному процессу - испусканию альфа-частицы - составляет всего 10 -7 . Один килограмм урана дает всего 10 спонтанных делений в секунду, а за это же время α-частицы излучают 20 миллионов ядер. Материнские нуклиды: 242 Pu(α), 238 Pa(β-) 234 Th, дочерний - 234 Th.

Хотя уран-238 не может быть использован как первичный делящийся материал, из-за высокой энергии нейтронов, необходимых для его деления, он занимает важное место в ядерной отрасли. Имея высокую плотность и атомный вес, 238 U пригоден для изготовления из него оболочек заряда/рефлектора в атомной и водородной бомбах. Тот факт, что он делится быстрыми нейтронами, увеличивает энерговыход заряда: косвенно, размножением отраженных нейтронов или непосредственно при делении ядер оболочки заряда быстрыми нейтронами (при синтезе). Примерно 40% нейтронов, образованных при делении и все нейтроны синтеза обладают достаточными для деления 238 U энергиями. 238 U имеет интенсивность спонтанного деления в 35 раз более высокую, чем 235 U, 5.51 делений/с⋅кг. Это делает невозможным применение его в качестве оболочки заряда/рефлектора в бомбах пушечной схемы, ибо подходящая его масса (200-300 кг) создаст слишком высокий нейтронный фон. Чистый 238 U имеет удельную радиоактивность 0.333 микрокюри/г. Важная область применения этого изотопа урана - производство 239 Pu. Плутоний образуется в ходе нескольких реакций, начинающихся после захвата атомом 238 U нейтрона. Любое реакторное топливо, содержащее природный или частично обогащенный по 235-му изотопу уран, после окончания топливного цикла содержит в себе определенную долю плутония.


Обедненный уран



После извлечения 235 U из природного урана, оставшийся материал носит название «обедненный уран», т.к. он обеднен изотопам 235 U и 234 U. Уменьшенное содержание 234 U (порядка 0,001%) снижает радиоактивность почти вдвое по сравнению с природным ураном, при этом уменьшение содержания 235 U практически не сказывается на радиоактивности обеднённого урана.

В мире практически весь обеднённый уран хранится в виде гексафторида. США располагают 560000 тонн обедненного гексафторида урана (UF6) на трех газодиффузионных обогатительных производствах, в России – сотни тысяч тонн. Обедненный уран в два раза менее радиоактивен, чем природный уран, в основном за счет удаления из него 234 U. Из-за того, что основное использование урана - производство энергии, на атомных реакторах тепловыми нейтронами, обедненный уран бесполезный продукт с низкой экономическое ценностью.

С точки зрения безопасности, общепринято переводить газообразный гексафторид обеднённого урана в оксид урана, который является твердым веществом. Оксид урана либо подлежит захоронению, как вид радиоактивных отходов, либо может быть использован в реакторах на быстрых нейтронах для наработки плутония.

Решение о способе утилизации оксида урана зависит от того, как та или иная страна рассматривает обедненный уран: как радиоактивные отходы, подлежащие захоронению, или как материал, пригодный для дальнейшего использования. Например, в США обедненный уран до недавнего времени рассматривался как сырье для дальнейшего использования. Но с 2005 года такая точка зрения начала меняться и сейчас в США возможно захоронение обедненного оксида урана. Во Франции обедненный уран не рассматривается как радиоактивные отходы, но предполагается к хранению в форме оксида урана. В России руководство Федерального агентства по атомной энергии считает отвальный гексафторид урана ценным материалом, не подлежащим захоронению. Начаты работы по созданию промышленной установки по переводу отвального гексафторида урана в оксид урана. Получаемые оксиды урана предполагается хранить длительное время для дальнейшего их использования в реакторах на быстрых нейтронах или дообогащение его 235 U с последующим сжиганием в тепловых реакторах.

Нахождение путей использования обедненного урана представляет собой большую проблему для обогатительных предприятий. В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью. Две важнейшие сферы использования обедненного урана: в качестве радиационной защиты и как балластной массы в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолете Боинг-747 содержится 1500 кг обедненного урана для этих целей. Обедненный уран в значительной степени применяется при бурении нефтяных скважин в виде ударных штанг (при канатном бурении), его вес погружает инструмент в скважины, наполненные буровым раствором. Этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах.

Но самое известное применение урана - в качестве сердечников для бронебойных снарядов. При определенном сплаве с другими металлами и термической обработке (сплавление с 2% Mo или 0.75% Ti, быстрая закалка разогретого до 850° металла в воде или масле, дальнейшее выдерживание при 450° 5 часов) металлический уран становиться тверже и прочнее стали (прочность на разрыв > 1600 МПа). В сочетании с большой плотностью, это делает закаленный уран чрезвычайно эффективным для пробивания брони, аналогичным по эффективности существенно более дорогому монокристаллическому вольфраму. Процесс разрушения брони сопровождается измельчением в пыль основной части урана, проникновением пыли внутрь защищенного объекта и воспламенением его там. 300 тонн обедненного урана остались на поле боя во время Бури в Пустыне (по большей части это остатки снарядов 30-мм пушки GAU-8 штурмовых самолетов A-10, каждый снаряд содержит 272 г уранового сплава). Обедненный уран используется в танковой броне, например, танка M-1 "Абрамс" (США). -4 % по массе (2-4 ppm в зависимости от региона), в кислых изверженных породах 3,5·10 -4 %, в глинах и сланцах 3,2·10 -4 %, в основных породах 5·10 -5 %, в ультраосновных породах мантии 3·10 -7 %. Количество урана в слое литосферы толщиной 20 км оценивают в 1.3⋅10 14 т. Он входит в состав всех пород, слагающих земную кору, а также присутствует в природных водах и живых организмах. Мощных месторождений не образует. Основная масса урана содержится в кислых, с высоким содержанием кремния, породах. Наименьшая концентрация урана имеет место в ультраосновных породах, максимальная – в осадочных породах (фосфоритах и углистых сланцах). В океанах содержится 10 10 т урана. Концентрация урана в почвах варьируется в интервале 0,7 – 11 ppm (15 ppm в сельскохозяйственных почвах, удобряемыми фосфорными удобрениями), в морской воде 0,003 ррm.

В свободном виде уран в земле не встречается. Известно 100 минералов урана с содержанием U более 1%. Примерно в одной трети этих минералов уран четырёхвалентен, в остальных – шестивалентен. 15 из этих урановых минералов являются простыми оксидами или гидроксилами, 20 – комплексными титанатами и ниобатами, 14 – силикатами, 17 – фосфатами, 10 – карбонатами, 6 – сульфатами, 8 – ванадатами, 8 – арсенатами. Неопределённые формы урановых соединений встречаются в некоторых углистых сланцах морского происхождения, лигните и угле, а также в межзёрновых плёнках в изверженных породах. Промышленное значение имеют 15 минералов урана.

Главные урановые минералы в крупных рудных месторождениях представлены оксидами (урановая смолка, уранинит, коффинит), ванадатами (карнотит и тюямунит) и комплексными титанатами (браннерит и давидит). Промышленное значение имеют также титанаты, например, браннерит UTi 2 O 6 , силикаты - коффинит U 1-x (OH) 4x , танталониобаты и гидритированные фосфаты и арсенаты уранила - урановые слюдки. Уран не встречается в природе как самородный элемент. Вследствие того, что уран может находиться в нескольких стадиях окисления, он встречается в весьма разнообразной геологической обстановке.


Применение урана


В развитых странах производство урана в основном направлено на генерацию делящихся нуклидов ( 235 U и 233 U, 239 Pu) - топлива промышленных реакторов, предназначенных для наработки как оружейных нуклидов, так и компонентов ядерного оружия (атомные бомбы и снаряды стратегического и тактического назначения, нейтронные бомбы, триггеры водородных бомб и т.д.). В атомной бомбе концентрация 235 U превышает 75%. В остальных странах мира металлический уран или его соединения используются в качестве ядерного горючего в энергетических и исследовательских ядерных реакторах. Природная или малообогащённая смесь изотопов урана применяется в стационарных реакторах атомных электростанций, продукт высокой степени обогащения – в ядерных силовых установках (источниках тепловой, электрической и механической энергии, излучения или света) или в реакторах, работающих на быстрых нейтронах. В реакторах часто используют металлический уран, легированный и нелегированный. Однако в некоторых типах реакторов применяют горючее в форме твердых соединений (например, UO 2 ), а также водных соединений урана или жидкого сплава урана с другим металлом.

Основное применение урана – производство ядерного топлива для АЭС. Для ядерного реактора с водой под давлением установленной мощностью 1400 МВт требуется в год 225 тонн природного урана для изготовления 50 новых топливных элементов, которые обмениваются на соответствующее число использованных ТВЭЛов. Для загрузки данного реактора необходимо около 130 тонн ЕРР (единица работы разделения) и уровень затрат в 40 млн долл. в год. Концентрация урана-235 в топливе для атомного реактора 2–5%.

По-прежнему определённый интерес урановые руды представляют с точки зрения извлечения из них радия (содержание которого примерно 1 г в 3 т руды) и некоторых других природных радионуклидов. Урановые соединения применяются в стекольной промышленности, для окраски стёкол в красный или зелёный цвет, или придания им красивого зеленовато-жёлтого оттенка. Используют их и в производстве флуоресцентных стёкол: небольшая добавка урана придаёт красивую жёлто-зелёную флуоресценцию стеклу.

До 1980-ых, естественный уран широко применяли дантисты, включая его в состав керамики, что позволяло добиться естественного цвета и вызвать оригинальную флуоресценцию зубных протезов и коронок. (Урановая челюсть делает вашу улыбку ярче!) Оригинальный патент от 1942 рекомендует содержание урана 0.1%. Впоследствии естественный уран заменили обеднённым. Это дало два преимущества – дешевле и менее радиоактивно. Уран также использовался в нитях ламп, и в кожевенной и деревообрабатывающей промышленности в составе красителей. Соли урана применяют в растворах протравы и морения шерсти и кожи. Уранилацетат и уранилформиат используются как поглощающие электроны декорирующие вещества в просвечивающей электронной микроскопии, для увеличения контраста тонких срезов биологических объектов, а также для окрашивания вирусов, клеток и макромолекул.

Уранаты типа Na 2 U 2 O 7 («желтый уранил») нашли применение в качестве пигментов для керамических глазурей и эмалей (окрашивают в цвета жёлтый, зелёный и чёрный, в зависимости от степени окисления). Na 2 U 2 O 7 используется также как жёлтая краска в живописи. Некоторые соединения урана светочувствительны. В начале ХХ века уранилнитрат широко применялся в качестве вирирующего агента для усиления негативов и получения тонированных фотографических отпечатков (окрашивание позитивов в коричневый или бурый цвет). Уранилацетат UO 2 (H 3 COOH) 2 используется в аналитической химии – он образует нерастворимую соль с натрием. Фосфорные удобрения содержат довольно большие количества урана. Металлический уран используется в качестве мишени в рентгеновской трубке, предназначенной для генерации высокоэнергетичного рентгеновского излучения.

Некоторые соли урана используются в качестве катализаторов при химических реакциях, таких, как окисление ароматических углеводородов, обезвоживание растительных масел, и др. Карбид 235 U в сплаве с карбидом ниобия и карбидом циркония применяется в качестве топлива для ядерных реактивных двигателей (рабочее тело - водород + гексан). Сплавы железа и обедненного урана ( 238 U) применяются как мощные магнитострикционные материалы.

В народном хозяйстве обедненный уран используется при изготовлении самолетных противовесов и противорадиационных экранов медицинской радиотерапевтической аппаратуры. Из обедненного урана изготавливают транспортные контейнеры для перевозки радиоактивных грузов и ядерных отходов, а также изделия надежной биологической защиты (например, защитные экраны). С точки зрения поглощения γ-излучения, уран в пять раз эффективнее свинца, что позволяет существенно снизить толщину защитных экранов и уменьшить объём контейнеров, предназначенных для транспортировки радионуклидов. Бетон на основе оксида обеднённого урана используют вместо гравия для создания сухих хранилищ радиоактивных отходов.

Обеднённый уран в два раза менее радиоактивен, чем природный уран, в основном за счёт удаления из него 234 U. Его используют для легирования броневой стали, в частности, для улучшения бронебойных характеристик снарядов. При сплавлении с 2% Mo или 0,75% Ti и термической обработке (быстрая закалка разогретого до 850°C металла в воде или масле, дальнейшее выдерживание при 450° 5 часов) металлический уран становится твёрже и прочнее стали (прочность на разрыв больше 1600 МПа, при том, что у чистого урана она равна 450 МПа). В сочетании с большой плотностью, это делает закалённую урановую болванку чрезвычайно эффективным средством для пробивания брони, аналогичным по эффективности более дорогому вольфраму. Тяжёлый урановый наконечник также изменяет распределение масс в снаряде, улучшая его аэродинамическую устойчивость. При попадании в броню такой снаряд (например, сплав урана с титаном) не ломается, а как бы самозатачивается, чем и достигается большая пробиваемость. Процесс разрушения брони сопровождается измельчением в пыль урановой болванки и воспламенением её на воздухе внутри танка. Обеднённый уран используется в современной танковой броне.

Добавление небольших количеств урана к стали увеличивает её твёрдость, не сообщая ей хрупкости и повышая её кислотоустойчивость. Особенно кислотоустойчивым, даже по отношению к царской водке, является сплав урана с никелем (66% урана и 33% никеля) с точкой плавления 1200 о . Обеднённый уран используется и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. Этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин.

Как уже упоминалось, в наше время урановые атомные бомбы не изготавливаются. Однако в современных плутониевых бомбах 238 U (в том числе – обеднённый уран) всё же применяется. Он составляет оболочку заряда, отражая нейтроны и добавляя инерцию в сжатие плутониевого заряда в имплозивной схеме подрыва. Это существенно повышает эффективность оружия и уменьшает критическую массу (т.е. уменьшает количество плутония, необходимого для создания цепной реакции деления). Применяют обеднённый уран и в водородных бомбах, запаковывая им термоядерный заряд, направляя сильнейший поток сверхбыстрых нейтронов на деление ядер и увеличивая тем самым энергетический выход оружия. Такая бомба называется оружием деление-синтез-деление в честь трёх стадий взрыва. Большая часть энергетического выхода при взрыве подобного оружия приходится как раз на деление 238 U, производящее значительное количество радиоактивных продуктов. Например, 77% энергии при взрыве водородной бомбы в испытании Ivy Mike (1952) мощностью 10,4 мегатонн пришлось именно на процессы деления в урановой оболочке. Поскольку обеднённый уран не имеет критической массы, его можно добавлять в бомбу в неограниченных количествах. В советской водородной бомбе (Царь Бомба – Кузькина мать), взорванной на Новой Земле в 1961 мощностью «только» 50 мегатонн 90% выхода пришлось на реакцию термоядерного синтеза, поскольку оболочку из 238 U на конечной стадии взрыва заменили на свинец. Если бы оболочку изготовили (как и собирались в начале) из 238 U, то мощность взрыва превыcила 100 мегатонн и выпадения радиоактивных осадков составило 1/3 от суммы всех мировых испытаний ядерного оружия.

Природные изотопы урана нашли применение в геохронологии для измерения абсолютного возраста горных пород и минералов. Еще в 1904 Эрнест Резерфорд обратил внимание на то, что возраст Земли и древнейших минералов – величина того же порядка, что и период полураспада урана. Тогда же он предложил по количеству гелия и урана, содержащихся в плотной породе, определять её возраст. Но вскоре выяснились недостаток метода: крайне подвижные атомы гелия легко диффундируют даже в плотных породах. Они проникают в окружающие минералы, а вблизи материнских урановых ядер остается значительно меньше гелия, чем следует по законам радиоактивного распада. Поэтому возраст пород вычисляют по соотношению урана и радиогенного свинца – конечного продукта распада урановых ядер. Возраст некоторых объектов, например, слюд, определить ещё проще: возраст материала пропорционален числу распавшихся в нём атомов урана, которое определяется числом следов – треков, оставляемых осколками в веществе. По отношению концентрации урана к концентрации треков можно вычислить возраст любого древнего сокровища (вазы, украшения и т.п.). В геологии даже изобрели специальный термин «урановые часы». Урановые часы – весьма универсальный инструмент. Изотопы урана содержатся во многих породах. Концентрация урана в земной коре в среднем равна трем частям на миллион. Этого достаточно, чтобы измерить соотношение урана и свинца, а затем по формулам радиоактивного распада рассчитать время, прошедшее с момента кристаллизации минерала. Урано-свинцовым способом удалось измерить возраст древнейших минералов, а по возрасту метеоритов определили дату рождения планеты Земля. Известен и возраст лунного грунта. Самые молодые куски лунного грунта старее древнейших земных минералов.

Уран не очень типичный актиноид, известно пять его валентных состояний - от 2+ до 6+ . Некоторые соединения урана имеют характерную окраску. Так, растворы трехвалентного урана - красного цвета, четырехвалентного - зеленого, а шестивалентный уран - он существует в форме уранил-иона (UO 2) 2+ - окрашивает растворы в желтый цвет... Тот факт, что шестивалентный уран образует соединения со многими органическими комплексообразователями, оказался очень важным для технологии извлечения элемента № 92.

Характерно, что внешняя электронная оболочка ионов урана всегда заполнена целиком; валентные электроны находятся в предыдущем электронном слое, в подоболочке 5f. Если сравнивать уран с другими элементами, то очевидно, что больше всего на него похож плутоний. Основное различие между ними - большой ионный радиус урана. Кроме того, плутоний наиболее устойчив в четырехвалентном состоянии, а уран - в шестивалентном. Это помогает разделить их, что очень важно: ядерное горючее плутоний-239 получают исключительно из урана, балластного с точки зрения энергетики урана-238. Плутоний образуется в массе урана, и их надо разделить!

Впрочем, раньше нужно получить эту самую массу урана, пройдя длинную технологическую цепочку, начинающуюся с руды. Как правило, многокомпонентной, бедной ураном руды.

Легкий изотоп тяжелого элемента

Рассказывая о получении элемента № 92, мы умышленно опустили одну важную стадию. Как известно, не всякий уран способен поддерживать цепную ядерную реакцию. Уран-238, на долю которого в природной смеси изотопов приходится 99,28%, на это не способен. Из-за того и превращают в плутоний уран-238, а природную смесь изотопов урана стремятся либо разделить, либо обогатить изотопом уран-235, способным делиться тепловыми нейтронами.

Способов разделения урана-235 и урана-238 разработано немало. Чаще всего пользуются методом газовой диффузии. Суть его в том, что если через пористую перегородку пропускать смесь двух газов, то легкий будет проходить быстрее. Еще в 1913 г. Ф. Астон таким путем частично разделил изотопы неона .

Большинство соединений урана при нормальных условиях - твердые тела и в газообразное состояние могут быть переведены только при очень высоких температурах, когда ни о каких тонких процессах разделения изотопов не может идти и речи. Однако бесцветное соединение урана с фтором - гексафторид UF 6 возгоняется уже при 56,5°С (при атмосферном давлении). UF 6 - самое летучее соединение урана, и оно лучше всего подходит для разделения его изотопов методом газовой диффузии.

Гексафториду урана свойственна большая химическая активность. Коррозия труб, насосов, емкостей, взаимодействие со смазкой механизмов - небольшой, но внушительный перечень неприятностей, которые пришлось преодолеть создателям диффузионных заводов. Встретились трудности и посерьезнее.

Гексафторид урана, получаемый фторированием естественной смеси изотопов урана, с «диффузионной» точки зрения можно рассматривать как смесь двух газов с очень близкими молекулярными массами - 349 (235+19*6) и 352 (238+19*6). Максимальный теоретический коэффициент разделения на одной диффузионной ступени для газов, столь незначительно отличающихся по молекулярной массе, равен всего 1,0043. В реальных условиях эта величина еще меньше. Получается, что повысить концентрацию урана-235 от 0,72 до 99% можно только с помощью нескольких тысяч диффузионных ступеней. Поэтому заводы по разделению изотопов урана занимают территорию в несколько десятков гектаров. Площадь пористых перегородок в разделительных каскадах заводов - величина примерно того же порядка.

Коротко о других изотопах урана

В естественный уран, кроме урана-235 и урана-238, входит уран-234. Содержание этого редкого изотопа выражается числом с четырьмя нулями после запятой. Гораздо доступнее искусственный изотоп - уран-233. Его получают, облучая в нейтронном потоке ядерного реактора торий:

232 90 Th + 10n → 233 90 Th -β-→ 233 91 Pa -β-→ 233 92 U
По всем правилам ядерной физики уран-233, как изотоп нечетный, делится тепловыми нейтронами. И самое главное, в реакторах с ураном-233 может происходить (и происходит) расширенное воспроизводство ядерного горючего. В обычном реакторе на тепловых нейтронах! Расчеты показывают, что при выгорании в ториевом реакторе килограмма урана-233 в нем же должно накопиться 1,1 кг нового урана-233. Чудо, да и только! Сожгли килограмм горючего, а горючего-то не убавилось.

Впрочем, подобные чудеса возможны лишь с ядерным горючим.

Уран-ториевый цикл в реакторах на тепловых нейтронах - главный конкурент уран-плутониевого цикла воспроизводства ядерного горючего в реакторах на быстрых нейтронах... Собственно, только из-за этого отнесли к числу стратегических материалов элемент № 90 - торий.

Другие искусственные изотопы урана не играют заметной роли. Стоит упомянуть еще лишь об уране-239 - первом изотопе в цепи превращений уран-238 плутоний-239. Его период полураспада всего 23 минуты.

Изотопы урана с массовым числом больше 240 в современных реакторах не успевают образоваться. Слишком мало время жизни урана-240, и он распадается, не успев захватить нейтрон.

В сверхмощных нейтронных потоках термоядерного взрыва ядро урана за миллионную долю секунды успевает захватить до 19 нейтронов. При этом рождаются изотопы урана с массовыми числами от 239 до 257. Об их существовании узнали по появлению в продуктах термоядерного взрыва далеких трансурановых элементов - потомков тяжелых изотопов урана. Сами «основатели рода» слишком неустойчивы к бета-распаду и переходят в высшие элементы задолго до извлечения продуктов ядерных реакций из перемешанной взрывом породы.

В современных тепловых реакторах сгорает уран-235. В уже существующих реакторах на быстрых нейтронах освобождается энергия ядер распространенного изотопа - урана-238, и если энергия - подлинное богатство, то урановые ядра уже в недалеком будущем облагодетельствуют человечество: энергия элемента N° 92 станет основой нашего существования.

Жизненно важно сделать так, чтобы уран и его производные сгорали только в атомных реакторах мирных энергетических установок, сгорали медленно, без дыма и пламени.

ЕЩЕ ОДИН ИСТОЧНИК УРАНА. В наши дни им стала морская вода. Уже действуют опытно-промышленные установки для извлечения урана из воды специальными сорбентами: окисью титана или акриловым волокном, обработанным определенными реактивами.

КТО СКОЛЬКО. В начале 80-х годов производство урана в капиталистических странах составляло около 50 000 г в год (в пересчете на U3Os). Примерно треть этого количества давала промышленность США. На втором месте - Канада, далее ЮАР. Нигор, Габон, Намибия. Из европейских стран больше всего урана и его соединений производит Франция, однако ее доля была почти в семь раз меньше, чем США.

НЕТРАДИЦИОННЫЕ СОЕДИНЕНИЯ. Хотя не лишено оснований утверждение о том, что в наши дни химия урана и плутония изучена лучше, чем химия таких традиционных элементов, как железо, однако и в наши дни химики получают новые урановые соединения. Так, в 1977 г. журнал «Радиохимия» т. XIX, вып. 6 сообщил о двух новых соединениях уранила. Их состав - MU02(S04)2-SH20, где М - ион двухвалентного марганца или кобальта. О том, что новые соединения - именно двойные соли, а не смесь двух похожих солей, свидетельствовали рентгенограммы.

Содержание статьи

УРАН, U (uranium), металлический химический элемент семейства актиноидов, которые включают Ac, Th, Pa, U и трансурановые элементы (Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr). Уран приобрел известность благодаря использованию его в ядерном оружии и атомной энергетике. Оксиды урана применяются также для окрашивания стекла и керамики.

Нахождение в природе.

Содержание урана в земной коре составляет 0,003%, он встречается в поверхностном слое земли в виде четырех видов отложений. Во-первых, это жилы уранинита, или урановой смолки (диоксид урана UO 2), очень богатые ураном, но редко встречающиеся. Им сопутствуют отложения радия, так как радий является прямым продуктом изотопного распада урана. Такие жилы встречаются в Заире, Канаде (Большое Медвежье озеро), Чехии и Франции. Вторым источником урана являются конгломераты ториевой и урановой руды совместно с рудами других важных минералов. Конгломераты обычно содержат достаточные для извлечения количества золота и серебра, а сопутствующими элементами становятся уран и торий. Большие месторождения этих руд находятся в Канаде, ЮАР, России и Австралии. Третьим источником урана являются осадочные породы и песчаники, богатые минералом карнотитом (уранил-ванадат калия), который содержит, кроме урана, значительное количество ванадия и других элементов. Такие руды встречаются в западных штатах США. Железоурановые сланцы и фосфатные руды составляют четвертый источник отложений. Богатые отложения обнаружены в глинистых сланцах Швеции. Некоторые фосфатные руды Марокко и США содержат значительные количества урана, а фосфатные залежи в Анголе и Центральноафриканской Республике еще более богаты ураном. Большинство лигнитов и некоторые угли обычно содержат примеси урана. Богатые ураном отложения лигнитов обнаружены в Северной и Южной Дакоте (США) и битумных углях Испании и Чехии.

Открытие.

Уран был открыт в 1789 немецким химиком М.Клапротом, который присвоил имя элементу в честь открытия за 8 лет перед этим планеты Уран. (Клапрот был ведущим химиком своего времени; он открыл также другие элементы, в том числе Ce, Ti и Zr.) В действительности вещество, полученное Клапротом, было не элементным ураном, но окисленной формой его, а элементный уран был впервые получен французским химиком Э.Пелиго в 1841. С момента открытия и до 20 в. уран не имел того значения, какое он имеет сейчас, хотя многие его физические свойства, а также атомная масса и плотность были определены. В 1896 А.Беккерель установил, что соли урана обладают излучением, которое засвечивает фотопластинку в темноте. Это открытие активизировало химиков к исследованиям в области радиоактивности и в 1898 французские физики супруги П.Кюри и М.Склодовская-Кюри выделили соли радиоактивных элементов полония и радия, а Э.Резерфорд, Ф.Содди, К.Фаянс и другие ученые разработали теорию радиоактивного распада, что заложило основы современной ядерной химии и атомной энергетики.

Первые применения урана.

Хотя радиоактивность солей урана была известна, его руды в первой трети нынешнего столетия использовались лишь для получения сопутствующего радия, а уран считался нежелательным побочным продуктом. Его использование было сосредоточено в основном в технологии керамики и в металлургии; оксиды урана широко применяли для окраски стекла в цвета от бледножелтого до темнозеленого, что способствовало развитию недорогих стекольных производств. Сегодня изделия этих производств идентифицируют как флуоресцирующие под ультрафиолетовыми лучами. Во время Первой мировой войны и вскоре после нее уран в виде карбида применяли в производстве инструментальных сталей, аналогично Mo и W; 4–8% урана заменяли вольфрам, производство которого в то время было ограничено. Для получения инструментальных сталей в 1914–1926 ежегодно производили по нескольку тонн ферроурана, содержащего до 30% (масс.) U. Однако такое применение урана продолжалось недолго.

Современное применение урана.

Промышленность урана начала складываться в 1939, когда было осуществлено деление изотопа урана 235 U, что привело к технической реализации контролируемых цепных реакций деления урана в декабре 1942. Это было рождение эры атома, когда уран из незначительного элемента превратился в один из наиболее важных элементов в жизни общества. Военное значение урана для производства атомной бомбы и использование в качестве топлива в ядерных реакторах вызвали спрос на уран, который возрос в астрономических размерах. Интересна хронология роста потребности в уране по истории отложений в Большом Медвежьем озере (Канада). В 1930 в этом озере была обнаружена смоляная обманка – смесь оксидов урана, а в 1932 на этом участке была налажена технология очистки радия. Из каждой тонны руды (смоляной обманки) получали 1 г радия и около половины тонны побочного продукта – уранового концентрата. Однако радия было мало и его добыча была прекращена. С 1940 по 1942 разработку возобновили и начали отправку урановой руды в США. В 1949 аналогичная очистка урана с некоторыми усовершенствованиями была применена для производства чистого UO 2 . Это производство росло, и в настоящее время оно является одним из наиболее крупных производств урана.

Свойства.

Уран – один из наиболее тяжелых элементов, встречающихся в природе. Чистый металл очень плотный, пластичный, электроположительный с малой электропроводностью и высокореакционноспособный.

Уран имеет три аллотропные модификации: a -уран (орторомбическая кристаллическая решетка), существует в интервале от комнатной температуры до 668° С; b -уран (сложная кристаллическая решетка тетрагонального типа), устойчивый в интервале 668–774° С; g -уран (объемноцентрированная кубическая кристаллическая решетка), устойчивый от 774° С вплоть до температуры плавления (1132° С). Поскольку все изотопы урана нестабильны, все его соединения проявляют радиоактивность.

Изотопы урана

238 U, 235 U, 234 U встречаются в природе в соотношении 99,3:0,7:0,0058, а 236 U – в следовых количествах. Все другие изотопы урана от 226 U до 242 U получают искусственно. Изотоп 235 U имеет особо важное значение. Под действием медленных (тепловых) нейтронов он делится с освобождением огромной энергии. Полное деление 235 U приводит к выделению «теплового энергетического эквивалента» 2Ч 10 7 кВтЧ ч/кг. Деление 235 U можно использовать не только для получения больших количеств энергии, но также для синтеза других важных актиноидных элементов. Уран природного изотопного состава можно использовать в ядерных реакторах для производства нейтронов, образующихся при делении 235 U, в то же время избыточные нейтроны, не востребуемые цепной реакцией, могут захватываться другим природным изотопом, что приводит к получению плутония:

При бомбардировке 238 U быстрыми нейтронами протекают следующие реакции:

Согласно этой схеме, наиболее распространенный изотоп 238 U может превращаться в плутоний-239, который, подобно 235 U, также способен делиться под действием медленных нейтронов.

В настоящее время получено большое число искусственных изотопов урана. Среди них 233 U особенно примечателен тем, что он также делится при взаимодействии с медленными нейтронами.

Некоторые другие искусственные изотопы урана часто применяются в качестве радиоактивных меток (индикаторов) в химических и физических исследованиях; это прежде всего b -излучатель 237 U и a -излучатель 232 U.

Соединения.

Уран – высокореакционноспособный металл – имеет степени окисления от +3 до +6, близок бериллию в ряду активности, взаимодействует со всеми неметаллами и образует интерметаллические соединения с Al, Be, Bi, Co, Cu, Fe, Hg, Mg, Ni, Pb, Sn и Zn. Тонкораздробленный уран особенно реакционноспособен и при температурах выше 500° С часто вступает в реакции, характерные для гидрида урана. Кусковой уран или стружка ярко сгорает при 700–1000° С, а пары урана горят уже при 150–250° С, с HF уран реагирует при 200–400° С, образуя UF 4 и H 2 . Уран медленно растворяется в концентрированной HF или H 2 SO 4 и 85%-ной H 3 PO 4 даже при 90° С, но легко реагирует с конц. HCl и менее активно с HBr или HI. Наиболее активно и быстро протекают реакции урана с разбавленной и концентрированной HNO 3 с образованием нитрата уранила (см. ниже ). В присутствии HCl уран быстро растворяется в органических кислотах, образуя органические соли U 4+ . В зависимости от степени окисления уран образует несколько типов солей (наиболее важные среди них с U 4+ , одна из них UCl 4 – легко окисляемая соль зеленого цвета); соли уранила (радикала UO 2 2+) типа UO 2 (NO 3) 2 имеют желтую окраску и флуоресцируют зеленым цветом. Соли уранила образуются при растворении амфотерного оксида UO 3 (желтая окраска) в кислой среде. В щелочной среде UO 3 образует уранаты типа Na 2 UO 4 или Na 2 U 2 O 7 . Последнее соединение («желтый уранил») применяют для изготовления фарфоровых глазурей и в производстве флуоресцентных стекол.

Галогениды урана широко изучались в 1940–1950, так как на их основе были разработаны методы разделения изотопов урана для атомной бомбы или ядерного реактора. Трифторид урана UF 3 был получен восстановлением UF 4 водородом, а тетрафторид урана UF 4 получают разными способами по реакциям HF с оксидами типа UO 3 или U 3 O 8 или электролитическим восстановлением соединений уранила. Гексафторид урана UF 6 получают фторированием U или UF 4 элементным фтором либо действием кислорода на UF 4 . Гексафторид образует прозрачные кристаллы с высоким коэффициентом преломления при 64° С (1137 мм рт. ст.); соединение летуче (в условиях нормального давления возгоняется при 56,54° С). Оксогалогениды урана, например, оксофториды, имеют состав UO 2 F 2 (фторид уранила), UOF 2 (оксид-дифторид урана).