Квадрат средней скорости молекул газа зависит от. Средняя квадратичная скорость молекул — среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа

Средняя скорость движения молекул

средняя скорость движения молекул $\left\langle v\right\rangle $, которая определяется как:

где N -- число молекул. Или, среднюю скорость можно найти как:

где $F\left(v\right)=4\pi {\left(\frac{m_0}{2\pi kT}\right)}^{\frac{3}{2}}exp\left(-\frac{m_0v^2}{2kT}\right)v^2$ -- функция распределения молекул по модулю скорости, указывающая долю молекул со скоростями, находящимися в единичном интервале $dv$ около величины скорости $v$, $m_0$- масса молекулы, $k$- постоянная Болцмана, T -- термодинамическая температура. Для того, чтобы определить, как средняя скорость молекулы связана с макропараметрами газа, как системы частиц, найдем значение интеграла (2).

Произведем замену:

Следовательно:

Подставим (4) и (5) в (3), получим:

Проведем интегрирование по частям, получим:

где R -- универсальная газовая постоянная, $\mu $- молярная масса газа.

Среднюю скорость движения молекул называют также скоростью теплового движения молекул.

Средняя относительная скорость молекул:

\[\left\langle v_{otn}\right\rangle =\sqrt{2}\sqrt{\frac{8kT}{\pi m_0}}=\sqrt{2}\left\langle v\right\rangle \left(7\right).\]

Средняя квадратичная скорость

Средней квадратичной скоростью движения молекул газа называют величину:

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{1}{N}\sum\limits^N_{i=1}{{v_i}^2}}\left(8\right).\]

\[{\left\langle v_{kv}\right\rangle }^2=\int\nolimits^{\infty }_0{v^2F\left(v\right)dv\ \left(9\right).}\]

Проводя интегрирование, которое аналогично интегрированию при получении связи средней скорости с температурой газа, получим:

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{3kT}{m_0}}=\sqrt{\frac{3RT}{\mu }}\left(10\right).\]

Именно средняя квадратичная скорость поступательного движения молекул газа входит в основное уравнение молекулярно-кинетической теории:

где $n=\frac{N}{V}$ -- концентрация частиц вещества, $N$- число частиц вещества, V- объем.

Пример 1

Задание: Определите, как изменяется средняя скорость движения молекул идеального газа при увеличении давления в процессе, представленном на графике (рис.1).

Запишем выражение для средней скорости движения молекул газа в виде:

\[\left\langle v\right\rangle =\sqrt{\frac{8kT}{\pi m_0}}\ \left(1.1\right)\]

По графику видим, что $p\sim \rho \ или\ p=C\rho ,\ $ где C- некоторая константа.

Подставим (1.2) в (1.1), получим:

\[\left\langle v\right\rangle =\sqrt{\frac{8kT}{\pi m_0}}=\sqrt{\frac{8C\rho }{\pi n}\frac{n}{\rho }}=\sqrt{\frac{8C}{\pi }}\left(1.3\right)\]

Ответ: В процессе, изображенном на графике, с ростом давления средняя скорость движения молекул не изменяется.

Пример 2

Задание: Можно ли вычислить среднюю квадратичную скорость молекулы идеального газа, если известны: давление газа (p), молярная масса газа ($\mu $) и концентрация молекул газа (n)?

Используем выражение для $\left\langle v_{kv}\right\rangle:$

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{3RT}{\mu }}\left(2.1\right).\]

Кроме того, из уравнения Менделеева -- Клайперона и зная, что $\frac{m}{\mu }=\frac{N}{N_A}$:

Разделим правую и левую части (2.2) на V, зная, что $\frac{N}{V}=n$ получим:

Подставим (2.3) в выражение для среднеквадратичной скорости (2.1), имеем:

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{3pN_A}{\mu n}}\ \left(2.4\right).\]

Ответ: По заданным в условии задачи параметрам среднеквадратичную скорость движения молекул газа вычислить можно с помощью формулы $\left\langle v_{kv}\right\rangle =\sqrt{\frac{3pN_A}{\mu n}}.$

«Физика - 10 класс»

Вспомните, что такое физическая модель.
Можно ли определить скорость одной молекулы?


Идеальный газ.


У газа при обычных давлениях расстояние между молекулами во много раз превышает их размеры. В этом случае силы взаимодействия молекул пренебрежимо малы и кинетическая энергия молекул много больше потенциальной энергии взаимодействия. Молекулы газа можно рассматривать как материальные точки или очень маленькие твёрдые шарики. Вместо реального газа , между молекулами которого действуют силы взаимодействия, мы будем рассматривать его модель - идеальный газ .

Идеальный газ - это теоретическая модель газа, в которой не учитываются размеры молекул (они считаются материальными точками) и их взаимодействие между собой (за исключением случаев непосредственного столкновения).

Естественно, при столкновении молекул идеального газа на них действует сила отталкивания. Так как молекулы газа мы можем согласно модели считать материальными точками, то размерами молекул мы пренебрегаем, считая, что объём, который они занимают, гораздо меньше объёма сосуда.

В физической модели принимают во внимание лишь те свойства реальной системы, учёт которых совершенно необходим для объяснения исследуемых закономерностей поведения этой системы.

Ни одна модель не может передать все свойства системы. Сейчас нам предстоит решить задачу: вычислить с помощью молекулярно-кинетической теории давление идеального газа на стенки сосуда. Для этой задачи модель идеального газа оказывается вполне удовлетворительной. Она приводит к результатам, которые подтверждаются опытом.


Давление газа в молекулярно-кинетической теории.


Пусть газ находится в закрытом сосуде. Манометр показывает давление газа р 0 . Как возникает это давление?

Каждая молекула газа, ударяясь о стенку, в течение малого промежутка времени действует на неё с некоторой силой. В результате беспорядочных ударов о стенку давление быстро меняется со временем примерно так, как показано на рисунке 9.1. Однако действия, вызванные ударами отдельных молекул, настолько слабы, что манометром они не регистрируются. Манометр фиксирует среднюю по времени силу, действующую на каждую единицу площади поверхности его чувствительного элемента - мембраны. Несмотря на небольшие изменения давления, среднее значение давления р 0 практически оказывается вполне определённой величиной, так как ударов о стенку очень много, а массы молекул очень малы.

Среднее давление имеет определённое значение как в газе, так и в жидкости. Но всегда происходят незначительные случайные отклонения от этого среднего значения. Чем меньше площадь поверхности тела, тем заметнее относительные изменения силы давления, действующей на данную площадь. Так, например, если участок поверхности тела имеет размер порядка нескольких диаметров молекулы, то действующая на неё сила давления меняется скачкообразно от нуля до некоторого значения при попадании молекулы на этот участок.


Среднее значение квадрата скорости молекул.


Для вычисления среднего давления надо знать значение средней скорости молекул (точнее, среднее значение квадрата скорости). Это не простой вопрос. Вы привыкли к тому, что скорость имеет каждая частица. Средняя же скорость молекул зависит от того, каковы скорости движения всех молекул.

Чем отличается определение средней скорости тела в механике от определения средней скорости молекул газа?

С самого начала нужно отказаться от попыток проследить за движением всех молекул, из которых состоит газ. Их слишком много, и движутся они очень сложно. Нам и не нужно знать, как движется каждая молекула. Мы должны выяснить, к какому результату приводит движение всех молекул газа.

Характер движения всей совокупности молекул газа известен из опыта. Молекулы участвуют в беспорядочном (тепловом) движении. Это означает, что скорость любой молекулы может оказаться как очень большой, так и очень малой. Направление движения молекул беспрестанно меняется при их столкновениях друг с другом.

Скорости отдельных молекул могут быть любыми, однако среднее значение модуля этих скоростей вполне определённое.

В дальнейшем нам понадобится среднее значение не самой скорости, а квадрата скорости - средняя квадратичная скорость. От этой величины зависит средняя кинетическая энергия молекул. А средняя кинетическая энергия молекул, как мы вскоре убедимся, имеет очень большое значение во всей молекулярно-кинетической теории. Обозначим модули скоростей отдельных молекул газа через υ 1 , υ 2 , υ 3 , ... , υ N . Среднее значение квадрата скорости определяется следующей формулой:

где N - число молекул в газе.

Но квадрат модуля любого вектора равен сумме квадратов его проекций на оси координат OX, OY, OZ.

Из курса механики известно что при движении на плоскости υ 2 = υ 2 x + υ 2 y . В случае, когда тело движется в пространстве, квадрат скорости равен:

υ 2 = υ 2 x + υ 2 y + υ 2 z . (9.2)

Средние значения величин υ 2 x , υ 2 y и υ 2 z можно определить с помощью формул, подобных формуле (9.1). Между средним значением и средними значениями квадратов проекций существует такое же соотношение, как соотношение (9.2):

Действительно, для каждой молекулы справедливо равенство (9.2). Сложив такие равенства для отдельных молекул и разделив обе части полученного уравнения на число молекул N, мы придём к формуле (9.3).

>Внимание! Так как направления трёх осей OX, OY и OZ вследствие беспорядочного движения молекул равноправны, средние значения квадратов проекций скорости равны друг другу:

Учитывая соотношение (9.4), подставим в формулу (9.3) вместо и . Тогда для среднего квадрата проекции скорости на ось ОХ получим

т. е. средний квадрат проекции скорости равен среднего квадрата самой скорости. Множитель появляется вследствие трёхмерности пространства и соответственно существования трёх проекций у любого вектора.

Скорости молекул беспорядочно меняются, но средний квадрат скорости вполне определённая величина.

Средняя квадратичная скорость молекул - среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа

Таблица значений средней квадратичной скорости молекул некоторых газов

Для того чтоб понять, откуда же у нас получается эта формула, мы выведем среднюю квадратичную скорость молекул. Вывод формулы начинается с основного уравнения молекулярно кинетический теории (МКТ):

Где у нас количество вещества, для более легкого доказательства, возьмем на рассмотрение 1 моль вещества, тогда у нас получается:

Если посмотреть, то PV это две третьих средней кинетической энергии всех молекул (а у нас взят 1 моль молекул):

Тогда, если приравнять правые части, у нас получается, что для 1 моля газа средняя кинетическая энергия будет равняться:

Но средняя кинетическая энергия, так же находится, как:

А вот теперь, если мы приравняем правые части и выразим из них скорость и возьмем квадрат,Число Авогадро на массу молекулы, получается Молярная масса то у нас и получится формула для средней квадратичной скорости молекулы газа:

А если расписать универсальную газовую постоянную, как , и за одно молярную массу , то у нас получится?

В Формуле мы использовали:

Средняя квадратичная скорость молекул

Постоянная Больцмана

=

где = 0,001кг/моль – молярная масса водорода. Поэтому

=

2.4.2. Определить среднюю кинетическую энергию поступательного движения одной молекулы воздуха при нормальных условиях. Концентрация молекул при нормальных условиях n 0 = 2,7*10 25 м -3

Анализ и решение. Из основного уравнения молекулярно – кинетической теории газов

Дж

2.4.3. Найти среднюю кинетическую энергию вращательного движения одной молекулы кислорода при температуре Т = 350К, а так же кинетическую энергию вращательного движения всех молекул, содержащихся в m = 4г кислорода.

Анализ и решение.

Известно, что на каждую степень свободы молекулы газа приходится одинаковая средняя энергия, выражаемая формулой

=

где к – постоянная Больцмана, Т – абсолютная температура газа.

Так как вращательному движению двухатомной молекулы (молекула кислорода - двухатомная) приписываются две степени свободы, то средняя энергия вращательного движения молекулы кислорода выразится формулой

=

Учитывая, что к = 1,38*10 -23 Дж/К и Т = 350К, получим

=1,38*10 -23 * 350 Дж = 4,83*10 -21 Дж.

Кинетическая энергия вращательного движения всех молекул газа определяется равенством

w = N (1)

Число всех молекул газа можно вычислить по формуле

N = N A  (2)

где N A – число Авогадро,  - число киломолей газа.

Если учесть, что число киломолей

где m – масса газа, - масса одного киломоля газа, то формула (2) примет вид N = N A

Подставив это выражение для N в формулу (1) получим

w = N A (3)

Выразим величины, входящие в эту формулу, в единицах СИ, и подставим в формулу (3):

2.4.4. Вычислить удельные теплоемкости при постоянном объеме С V и при постоянном давлении неона и водорода, принимая эти газы за идеальные.

Анализ и решение.

Удельные теплоемкости идеальных газов выражаются формулами:

С V = (1)

С р =
(2)

где і – число степеней свободы молекулы газа, - молярная масса.

Для неона (одноатомный газ) і = 3 и = 20*10 -3 кг/моль.

Вычисляя по формулам (1) и (2), получим: С V =
Дж/кг*к

С р =
Дж/кг*к

Для водорода (двухатомный газ) і = 3 и = 2*10 -3 кг/моль. Вычисляя по тем же формулам, получим:

С V =
Дж/кг*к

С р =
Дж/кг*к

2.4.5. Найти среднюю квадратичную скорость, среднюю кинетическую энергию поступательного движения и среднюю полную кинетическую энергию молекул гелия и азота при температуре t = 27 0 С. Определить полную энергию всех молекул 100 г каждого из газов.

Анализ и решение.

Средняя кинетическая энергия поступательного движения одной молекулы любого газа однозначно определяется его термодинамической температурой:

= (1)

где к = 1,38*10 -23 Дж/К – постоянная Больцмана.

Однако средняя квадратичная скорость молекул газа зависит от массы его молекул:

(2)

где m 0 – масса одной молекулы.

Средняя полная энергия молекулы зависит не только от температуры, но и от структуры молекул – от числа i степеней свободы: = ikT/2

Полная кинетическая энергия всех молекул, равная для идеального газа его внутренней энергии, может быть найдена, как произведение на число всех молекул:

Очевидно, N = N А m/ (5)

где m – масса всего газа, отношении m/ определяет число молей, а N А – постоянная Авогадро. Выражение (4) с учетом уравнения Клапейрона – Менделеева позволит рассчитать полную энергию всех молекул газа.

Согласно равенству (1) < W о п > = 6,2*10 -21 Дж, причем средняя энергия поступательного движения одной молекулы и гелия и азота одинаковы.

Среднюю квадратичную скорость находим по формуле

, где R = 8,31Дж/к моль

Для гелия V кв = 13,7*10 2 м/с

Для азота V кв = 5,17*10 2 м/с

Гелий одноатомный газ, следовательно, i = 3, тогда < W о п > = W о = 6,2*10 -21 Дж.

Азот – двухатомный газ, следовательно, i = 5 и < W о п > = 5/2 кТ = 10,4*10 -21 Дж.

Полная энергия всех молекул после подстановки выражений (3) и (5) в (4) имеет вид

W = кТ
=

Для гелия W = 93,5 кДж, для азота W = 22,3 кДж.